Dual Approach to Inverse Covariance Intersection Fusion

dc.contributor.authorAjgl, Jiří
dc.contributor.authorStraka, Ondřej
dc.date.accessioned2025-06-20T08:35:11Z
dc.date.available2025-06-20T08:35:11Z
dc.date.issued2024
dc.date.updated2025-06-20T08:35:11Z
dc.description.abstractLinear fusion of estimates under the condition of no knowledge of correlation of estimation errors has reached maturity. On the other hand, various cases of partial knowledge are still active research areas. A frequent motivation is to deal with “common information” or “common noise”, whatever it means. A fusion rule for a strict meaning of the former expression has already been elaborated. Despite the dual relationship, a strict meaning of the latter one has not been considered so far. The paper focuses on this area. The assumption of unknown “common noise” is formulated first, analysis of theoretical properties and illustrations follow. Although the results are disappointing from the perspective of a single upper bound of mean square error matrices, the partial knowledge demonstrates improvement over no knowledge in suboptimal cases and from the perspective of families of upper bounds.en
dc.format6
dc.identifier.doi10.1109/MFI62651.2024.10705759
dc.identifier.isbn979-8-3503-6803-1
dc.identifier.issn2835-947X
dc.identifier.obd43944067
dc.identifier.orcidAjgl, Jiří 0000-0001-7863-9697
dc.identifier.orcidStraka, Ondřej 0000-0003-3066-5882
dc.identifier.urihttp://hdl.handle.net/11025/60252
dc.language.isoen
dc.project.IDSGS-2022-022
dc.project.IDEH22_008/0004590
dc.publisherIEEE
dc.relation.ispartofseries2024 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI 2024
dc.subjectdecentralised estimationen
dc.subjectdata fusionen
dc.subjectunknown correlationen
dc.subjectmatrix boundsen
dc.subjectcovariance intersectionen
dc.titleDual Approach to Inverse Covariance Intersection Fusionen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size357593*
local.has.filesyes*
local.identifier.eid2-s2.0-85207822799

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_MFI24_AjSt.pdf
Size:
349.21 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: