Minimization of Energy Functionals via FEM: Implementation of hp-FEM
| dc.contributor.author | Frost, Miroslav | |
| dc.contributor.author | Moskovka, Alexej | |
| dc.contributor.author | Valdman, Jan | |
| dc.date.accessioned | 2025-06-20T08:38:59Z | |
| dc.date.available | 2025-06-20T08:38:59Z | |
| dc.date.issued | 2024 | |
| dc.date.updated | 2025-06-20T08:38:58Z | |
| dc.description.abstract | Many problems in science and engineering can be rigorously recast into minimizing a suitable energy functional. We have been developing efficient and flexible solution strategies to tackle various minimization problems by employing finite element discretization with P1 triangular elements [1, 2]. An extension to rectangular hp-finite elements in 2D is introduced in this contribution. | en |
| dc.format | 9 | |
| dc.identifier.document-number | 001279202200032 | |
| dc.identifier.doi | 10.1007/978-3-031-56208-2_31 | |
| dc.identifier.isbn | 978-3-031-56207-5 | |
| dc.identifier.issn | 0302-9743 | |
| dc.identifier.obd | 43943980 | |
| dc.identifier.orcid | Moskovka, Alexej 0000-0003-0091-151X | |
| dc.identifier.uri | http://hdl.handle.net/11025/60621 | |
| dc.language.iso | en | |
| dc.project.ID | SGS-2022-006 | |
| dc.publisher | Springer | |
| dc.relation.ispartofseries | 14th International Conference on Large-Scale Scientific Computations, LSSC 2023 | |
| dc.subject | hp finite elements | en |
| dc.subject | energy functional | en |
| dc.subject | trust-region methods | en |
| dc.subject | p-Laplace equation | en |
| dc.subject | hyperelasticity | en |
| dc.subject | MATLAB code vectorization | en |
| dc.title | Minimization of Energy Functionals via FEM: Implementation of hp-FEM | en |
| dc.type | Stať ve sborníku (D) | |
| dc.type | STAŤ VE SBORNÍKU | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 4081065 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85195483165 |