Neural Network based Active Fault Diagnosis with a Statistical Test
| dc.contributor.author | Punčochář, Ivo | |
| dc.contributor.author | Král, Ladislav | |
| dc.date.accessioned | 2025-06-20T08:44:40Z | |
| dc.date.available | 2025-06-20T08:44:40Z | |
| dc.date.issued | 2023 | |
| dc.date.updated | 2025-06-20T08:44:40Z | |
| dc.description.abstract | The paper focuses on designing an active fault detector (AFD) for a nonlinear stochastic system subject to abrupt faults. The neural network (NN) based models of the monitored system and their prediction error uncertainties are identified using historical input-output data obtained from the system under fault-free and all considered faulty conditions. The fault detector is based on a multiple hypothesis CUSUM-like statistical test that uses the identified NN models. The quality of decisions provided by such a detector is improved by a closed loop input signal generator. The input signal generator is represented by another NN and it is designed using a reinforcement learning method. The proposed AFD is illustrated by means of a numerical example. | en |
| dc.format | 10 | |
| dc.identifier.doi | 10.1007/978-3-031-35170-9_21 | |
| dc.identifier.isbn | 978-3-031-35169-3 | |
| dc.identifier.issn | 2367-3370 | |
| dc.identifier.obd | 43941379 | |
| dc.identifier.orcid | Punčochář, Ivo 0000-0003-0528-7998 | |
| dc.identifier.orcid | Král, Ladislav 0000-0002-0762-8250 | |
| dc.identifier.uri | http://hdl.handle.net/11025/60876 | |
| dc.language.iso | en | |
| dc.project.ID | SGS-2022-022 | |
| dc.project.ID | GA22-11101S | |
| dc.publisher | Springer | |
| dc.relation.ispartofseries | 21st Polish Control Conference, PCC 2023 | |
| dc.subject | active fault detection | en |
| dc.subject | sequential statistical test | en |
| dc.subject | neural network | en |
| dc.title | Neural Network based Active Fault Diagnosis with a Statistical Test | en |
| dc.type | Stať ve sborníku (D) | |
| dc.type | STAŤ VE SBORNÍKU | |
| dc.type.status | Pre-print | |
| local.files.count | 1 | * |
| local.files.size | 248780 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85175720705 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- article_PCC23_PuKr.pdf
- Size:
- 242.95 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: