Neural Network based Active Fault Diagnosis with a Statistical Test

dc.contributor.authorPunčochář, Ivo
dc.contributor.authorKrál, Ladislav
dc.date.accessioned2025-06-20T08:44:40Z
dc.date.available2025-06-20T08:44:40Z
dc.date.issued2023
dc.date.updated2025-06-20T08:44:40Z
dc.description.abstractThe paper focuses on designing an active fault detector (AFD) for a nonlinear stochastic system subject to abrupt faults. The neural network (NN) based models of the monitored system and their prediction error uncertainties are identified using historical input-output data obtained from the system under fault-free and all considered faulty conditions. The fault detector is based on a multiple hypothesis CUSUM-like statistical test that uses the identified NN models. The quality of decisions provided by such a detector is improved by a closed loop input signal generator. The input signal generator is represented by another NN and it is designed using a reinforcement learning method. The proposed AFD is illustrated by means of a numerical example.en
dc.format10
dc.identifier.doi10.1007/978-3-031-35170-9_21
dc.identifier.isbn978-3-031-35169-3
dc.identifier.issn2367-3370
dc.identifier.obd43941379
dc.identifier.orcidPunčochář, Ivo 0000-0003-0528-7998
dc.identifier.orcidKrál, Ladislav 0000-0002-0762-8250
dc.identifier.urihttp://hdl.handle.net/11025/60876
dc.language.isoen
dc.project.IDSGS-2022-022
dc.project.IDGA22-11101S
dc.publisherSpringer
dc.relation.ispartofseries21st Polish Control Conference, PCC 2023
dc.subjectactive fault detectionen
dc.subjectsequential statistical testen
dc.subjectneural networken
dc.titleNeural Network based Active Fault Diagnosis with a Statistical Testen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPre-print
local.files.count1*
local.files.size248780*
local.has.filesyes*
local.identifier.eid2-s2.0-85175720705

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_PCC23_PuKr.pdf
Size:
242.95 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: