Overview of LifeCLEF 2024: Challenges on Species Distribution Prediction and Identification

dc.contributor.authorJoly, Alexis
dc.contributor.authorPicek, Lukáš
dc.contributor.authorKahl, Stefan
dc.contributor.authorGoëau, Hervé
dc.contributor.authorEspitalier, Vincent
dc.contributor.authorBotella, Christophe
dc.contributor.authorMarcos, Diego
dc.contributor.authorEstopinan, Joaquim
dc.contributor.authorLeblanc, Cesar
dc.contributor.authorLarcher, Théo
dc.contributor.authorŠulc, Milan
dc.contributor.authorHrúz, Marek
dc.contributor.authorServajean, Maximillien
dc.contributor.authorGlotin, Hervé
dc.contributor.authorPlanqué, Robert
dc.contributor.authorVellinga, Willem-Pier
dc.contributor.authorKlinck, Holger
dc.contributor.authorDenton, Tom
dc.contributor.authorEggel, Ivan
dc.contributor.authorBonnet, Pierre
dc.contributor.authorMüller, Henning
dc.date.accessioned2025-06-20T08:35:58Z
dc.date.available2025-06-20T08:35:58Z
dc.date.issued2024
dc.date.updated2025-06-20T08:35:57Z
dc.description.abstractBiodiversity monitoring using machine learning and AI-based approaches is becoming increasingly popular. It allows for providing detailed information on species distribution and ecosystem health at a large scale and contributes to informed decision-making on environmental protection. Species identification based on images and sounds, in particular, is invaluable for facilitating biodiversity monitoring efforts and enabling prompt conservation actions to protect threatened and endangered species. The multiplicity of methods developed, however, makes it important to evaluate their performance on realistic datasets and using standardized evaluation protocols. The LifeCLEF lab has been setting up such evaluations since 2011, encouraging machine learning researchers to work on this topic and promoting the adoption of the technologies developed by stakeholders. The 2024 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i) BirdCLEF: bird call identification in soundscapes, (ii) FungiCLEF: revisiting fungi species recognition beyond 0-1 cost, (iii) GeoLifeCLEF: remote sensing based prediction of species, (iv) PlantCLEF: Multi-species identification in vegetation plot images, and (v) SnakeCLEF: revisiting snake species identification in medically important scenarios. This paper overviews the motivation, methodology, and main outcomes of those five challenges.en
dc.format25
dc.identifier.document-number001336411000009
dc.identifier.doi10.1007/978-3-031-71908-0_9
dc.identifier.isbn978-3-031-71907-3
dc.identifier.issn0302-9743
dc.identifier.obd43944171
dc.identifier.orcidPicek, Lukáš 0000-0002-6041-9722
dc.identifier.orcidHrúz, Marek 0000-0002-7851-9879
dc.identifier.urihttp://hdl.handle.net/11025/60333
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofseries15th International Conference of the CLEF Association, CLEF 2024
dc.subjectLifeCLEFen
dc.subject species distributionen
dc.subjectpredictionen
dc.subjectidentificationen
dc.titleOverview of LifeCLEF 2024: Challenges on Species Distribution Prediction and Identificationen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size1638626*
local.has.filesyes*
local.identifier.eid2-s2.0-85199393365

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
978-3-031-71908-0_9.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: