Transfer Learning of Transformer-Based Speech Recognition Models from Czech to Slovak

dc.contributor.authorLehečka, Jan
dc.contributor.authorPsutka, Josef
dc.contributor.authorPsutka, Josef
dc.date.accessioned2025-06-20T08:55:20Z
dc.date.available2025-06-20T08:55:20Z
dc.date.issued2023
dc.date.updated2025-06-20T08:55:20Z
dc.description.abstractIn this paper, we are comparing several methods of training the Slovak speech recognition models based on the Transformers architecture. Specifically, we are exploring the approach of transfer learning from the existing Czech pre-trained Wav2Vec 2.0 model into Slovak. We are demonstrating the benefits of the proposed approach on three Slovak datasets. Our Slovak models scored the best results when initializing the weights from the Czech model at the beginning of the pre-training phase. Our results show that the knowledge stored in the Cezch pre-trained model can be successfully reused to solve tasks in Slovak while outperforming even much larger public multilingual models.en
dc.format11
dc.identifier.doi10.1007/978-3-031-40498-6_29
dc.identifier.isbn978-3-031-40497-9
dc.identifier.issn0302-9743
dc.identifier.obd43940623
dc.identifier.orcidLehečka, Jan 0000-0002-3889-8069
dc.identifier.orcidPsutka, Josef 0000-0003-4761-1645
dc.identifier.orcidPsutka, Josef 0000-0002-0764-3207
dc.identifier.urihttp://hdl.handle.net/11025/61571
dc.language.isoen
dc.project.ID90254
dc.project.IDVJ01010108
dc.publisherSpringer International Publishing
dc.relation.ispartofseries26th International Conference on Text, Speech, and Dialogue, TSD 2023
dc.subjectTransfer learningen
dc.subjectWav2Vec 2.0en
dc.subjectTransformersen
dc.titleTransfer Learning of Transformer-Based Speech Recognition Models from Czech to Slovaken
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size262715*
local.has.filesyes*
local.identifier.eid2-s2.0-85171991324

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
978-3-031-40498-6_29-2.pdf
Size:
256.56 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: