Maticové populační modely dynamiky lesních ekosystémů

Date issued

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Západočeská univerzita v Plzni

Abstract

Maticové strukturované populační modely jsou příkladem soustav diferenčních rovnic 1. řádu, které patří mezi významné modelové nástroje používané při studiu dynamiky růstu lesních porostů. Dynamika stavu lesa se řídí vlastnostmi Usherovy projekční matice, která patří mezi nezáporné čtvercové matice. Výchozím bodem práce je formulace Perronovy-Frobeniovy věty a dalších významných vět z teorie maticové algebry nezáporných matic, které jsou následně uplatněny při studiu vlastností obecného deterministického lineárního maticového modelu růstu lesa. Stěžejní část práce je věnována sestavení lineárního modelu růstu lesa o dvou růstových třídách, které odpovídají mladým a dospělým jedincům. Hlavním cílem je odvození obecného řešení tohoto modelu a analýza jeho asymptotických vlastností. Dokážeme, že asymptotické chování modelu je možné vyhodnotit na základě čisté míry reprodukce, biologického parametru modelu, který rozhoduje o stabilitě extinkčního rovnovážného bodu. Z výsledků mimo jiné plyne, že les bude dlouhodobě prosperovat i při nižší míře reprodukce, pokud jsou zajištěny vhodné růstové podmínky nebo míra mortality jedinců je na nízké úrovni.

Description

Subject(s)

maticový populační model, lineární dynamický systém, nezáporná matice, nerozložitelná, primitivní, perronova-frobeniova věta, vlastní čísla, čistá míra reprodukce, růst lesa

Citation

OPEN License Selector