Effect of inhomogeneities in epoxy-glass-mica composites on conductive channel formation

dc.contributor.authorKadlec, Petr
dc.contributor.authorMusil, Ondřej
dc.contributor.authorNikolić, Valentino
dc.contributor.authorPolanský, Radek
dc.date.accessioned2022-10-03T10:00:16Z
dc.date.available2022-10-03T10:00:16Z
dc.date.issued2022
dc.description.abstract-translatedEpoxy-glass-mica composites consisting of an epoxy matrix, glass fibers, and a mica paper are commonly used in insulation systems where high dielectric strength is expected. Such insulating systems are typically made from partially cured and flexible prepregs that are layered and shaped before final curing. Due to the extensive range of epoxy resins and various types of glass fibers and mica paper, the material parameters, including dielectric strength, can vary significantly between prepregs produced by various manufacturers. However, in addition to the composition, inhomogeneities formed due to the prepreg layering and curing, such as air microbubbles presented in the prepregs before curing or trapped between the prepregs during curing, must also be considered. These influences can significantly affect the resulting dielectric strength and the mechanism of formation and propagation of conductive channels in a structure prepared from several layers of prepregs. This study analyzes the mechanism leading to the breakdown of two types of epoxy-glass-mica prepregs with a very similar composition but supplied by different manufacturers. The different geometry and distribution of glass fibers and the structure of the mica paper were macroscopically visible at a glance for tested materials. The main monitored material parameter was the dielectric strength, and the specimens after breakdown were evaluated by imaging methods. The first composite with the lower dielectric strength was characterized by a dominant conductive channel and minimal branching. The second composite with the higher dielectric strength (average value higher by about 50% than the first one) showed significant branching in a larger specimen’s area.en
dc.format4 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationKADLEC, P. MUSIL, O. NIKOLIĆ, V. POLANSKÝ, R. Effect of inhomogeneities in epoxy-glass-mica composites on conductive channel formation. In 2022 IEEE Electrical Insulation Conference (EIC 2022) : /proceedings/. Piscaway: IEEE, 2022. s. 111-114. ISBN: 978-1-66548-023-9cs
dc.identifier.doi10.1109/EIC51169.2022.9833188
dc.identifier.isbn978-1-66548-023-9
dc.identifier.obd43936541
dc.identifier.uri2-s2.0-85136330503
dc.identifier.urihttp://hdl.handle.net/11025/49669
dc.language.isoenen
dc.project.IDSGS-2021-003/Materiály, technologie a diagnostika v elektrotechnicecs
dc.publisherIEEEen
dc.relation.ispartofseries2022 IEEE Electrical Insulation Conference (EIC 2022) : /proceedings/en
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© IEEEen
dc.rights.accessrestrictedAccessen
dc.subject.translateddielectric strengthen
dc.subject.translatedconductive channelen
dc.subject.translatedlayered compositesen
dc.subject.translatedepoxy-based compositesen
dc.subject.translatedprepregsen
dc.titleEffect of inhomogeneities in epoxy-glass-mica composites on conductive channel formationen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Effect_of_inhomogeneities_in_epoxy-glass-mica_composites_on_conductive_channel_formation.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format