Pedestrian Tracking with Monocular Camera using Unconstrained 3D Motion Model

dc.contributor.authorKrejčí, Jan
dc.contributor.authorKost, Oliver
dc.contributor.authorStraka, Ondřej
dc.contributor.authorDuník, Jindřich
dc.date.accessioned2025-06-20T08:35:16Z
dc.date.available2025-06-20T08:35:16Z
dc.date.issued2024
dc.date.updated2025-06-20T08:35:16Z
dc.description.abstractA first-principle single-object model is proposed for pedestrian tracking. It is assumed that the extent of the moving object can be described via known statistics in 3D, such as pedestrian height. The proposed model thus need not constrain the object motion in 3D to a common ground plane, which is usual in 3D visual tracking applications. A nonlinear filter for this model is implemented using the unscented Kalman filter (UKF) and tested using the publicly available MOT-17 dataset. The proposed solution yields promising results in 3D while maintaining excellent results when projected into the 2D image. Moreover, the estimation error covariance matches the true one. Unlike conventional methods, the introduced model parameters have convenient meaning and can readily be adjusted for a problem.en
dc.format8
dc.identifier.document-number001334560000160
dc.identifier.doi10.23919/FUSION59988.2024.10706432
dc.identifier.isbn978-1-73774-976-9
dc.identifier.obd43944070
dc.identifier.orcidKrejčí, Jan 0000-0002-0027-6870
dc.identifier.orcidKost, Oliver 0000-0002-6355-6677
dc.identifier.orcidStraka, Ondřej 0000-0003-3066-5882
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.urihttp://hdl.handle.net/11025/60261
dc.language.isoen
dc.project.IDSGS-2022-022
dc.project.IDEH22_008/0004590
dc.publisherIEEE
dc.relation.ispartofseries27th International Conference on Information Fusion, FUSION 2024
dc.subjectvisual object trackingen
dc.subjectbounding boxen
dc.subjectunscented Kalman filteren
dc.subject3D modelingen
dc.titlePedestrian Tracking with Monocular Camera using Unconstrained 3D Motion Modelen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size1666665*
local.has.filesyes*
local.identifier.eid2-s2.0-85207693646

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_FUSION24_KrKoStDu.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: