Dynamické systémy na grafech

Date issued

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Západočeská univerzita v Plzni

Abstract

Záměrem této práce je shrnout naše nedávné výsledky týkající se konkrétních fenoménů vyskytujících se v dynamických systémech na grafech. Soustředíme se na dynamické systémy s diskrétní a spojitou prostorovou strukturou a časem. Velký důraz klademe na jevy, které se projevují výhradně u systémů s diskrétní prostorovou strukturou narozdíl od jejich spojitých protějšků. Toto srovnání uvažujeme z pohledu možných aplikací v numerické analýze a modelování systémů, u nichž homogenizace prostoru vede k významné redukci chování. Dvěma hlavními tématy jsou evoluční hry na grafech a reakčně-difúzní rovnice. Evoluční hra na grafu je model, jenž popisuje interakce hráčů uspořádaných v nějaké dané prostorové struktuře. Každý hráč má přiřazenu strategii (spolupráce nebo nespolupráce), která je aktualizována v souladu s pravidly hry. Tento model je příkladem systému s diskrétní časovou strukturou a stavovým prostorem. Zkoumáme souvislost mezi strukturou podkladového grafu a existencí pevných bodů systému. Také ukážeme, že evoluční hra na grafu může obsahovat periodické orbity libovoné délky. Reakčně-difúzní rovnice tradičně popisují časový vývoj systémů modelujících chemické, fyzikální, biologické a další děje. Zde se zaměřujeme hlavně na periodická stacionární řešení a cestující vlny v bistabilních reakčně-difúzních rovnicích na mřížce. Mřížkové diferenciální rovnice mohou být chápány buď jako důsledek diskretizace parciálních reakčně-difúzních rovnic na reálné ose pomocí metody konečných diferencí, ale mají své opodstatnění i jako samostatné modely. Za základním model uvažujeme Nagumovu rovnici na mřížce, tj. rovnici, jejíž reakční člen je kubický polynom. Mnoho výsledků je ale platných i pro obecné bistabilní rovnice na mřížkách. Bistabilní rovnice na mřížce má na rozdíl od odpovídající parciální diferenciální rovnice nekonečné množství prostorově heterogenních stacionárních řešení. Toto chování se občas nazývá "prostorový chaos", protože počet řešení je dispropocionálně vyšší než počet uzlů (počet rovnic). V této práci ukážeme, jak lze zavést značící schéma pro periodická stacionární řešení a jak určit jejich přesný počet, pokud budeme uvažovat symetrie rovnice. Naše zkoumání cestujících vln započneme "selháním propagace", tj. situací, při které monotonní vlna necestuje. To obvykle nastává u mřížkové rovnice s malou intenzitou difúze. Obecně se uvažuje, že bohatá struktura stacionárních řešení zabraňuje monotonním vlnám v cestování. Část týkající se cestujících vln uzavřeme představením tzv. "vícebarevných vln"; nemonotonních vln spojujících dvě periodická stacionární řešení rovnice na mřížce. Tyto vlny mohou cestovat i pro kombinace parametrů, kdy monotonní vlny projevují "selhání propagace". Dále je můžeme spojovat do složitějších struktur a studovat jejich srážky. V neposlední řadě pozorujeme nemonotonní závislost rychlosti vlny na intenzitě difúze, což je kvalitativní rozdíl v chování oproti vlnám v Nagumově parciální diferenciální rovnici.

Description

Subject(s)

reakčně-difúzní rovnice, diferenciální rovnice na mřížce, diferenciální rovnice na grafu, cestující vlny, periodická řešení, stacionární řešení, evoluční hry na grafu, teorie her, periodické orbity, diskrétní dynamické systémy

Citation