Uncertainty Quantification in Deep Learning Based Kalman Filters

dc.contributor.authorDahan, Yehonatan
dc.contributor.authorRevach, Guy
dc.contributor.authorDuník, Jindřich
dc.contributor.authorShlezinger, Nir
dc.date.accessioned2025-06-20T08:35:29Z
dc.date.available2025-06-20T08:35:29Z
dc.date.issued2024
dc.date.updated2025-06-20T08:35:29Z
dc.description.abstractVarious algorithms combine deep neural networks (DNNs) and Kalman filters (KFs) to learn from data to track in complex dynamics. Unlike classic KFs, DNN-based systems do not naturally provide the error covariance alongside their estimate, which is of great importance in some applications, e.g., navigation. To bridge this gap, in this work we study error covariance extraction in DNN-aided KFs. We examine three main approaches that are distinguished by the ability to associate internal features with meaningful KF quantities such as the Kalman gain (KG) and prior covariance. We identify the differences between these approaches in their requirements and their effect on the training of the system. Our numerical study demonstrates that the above approaches allow DNN-aided KFs to extract error covariance, with most accurate error prediction provided by model-based/data-driven designs.en
dc.format5
dc.identifier.document-number001396233806072
dc.identifier.doi10.1109/ICASSP48485.2024.10447987
dc.identifier.isbn979-8-3503-4485-1
dc.identifier.issn1520-6149
dc.identifier.obd43944100
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.urihttp://hdl.handle.net/11025/60284
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartofseries49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
dc.subjectKalman filteren
dc.subjectdeep learningen
dc.subjectuncertaintyen
dc.titleUncertainty Quantification in Deep Learning Based Kalman Filtersen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size1678068*
local.has.filesyes*
local.identifier.eid2-s2.0-105001572783

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_ICASSP24_DaReDuSh.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: