S-packing colorings of distance graphs with distance sets of cardinality 2
| dc.contributor.author | Holub, PΕemysl | |
| dc.contributor.author | MelicharovΓ‘, Petra | |
| dc.contributor.author | BreΕ‘ar, BoΕ‘tjan | |
| dc.contributor.author | Ferme, Jasmina | |
| dc.contributor.author | Jakovac, Marko | |
| dc.date.accessioned | 2025-06-20T08:40:51Z | |
| dc.date.available | 2025-06-20T08:40:51Z | |
| dc.date.issued | 2025 | |
| dc.date.updated | 2025-06-20T08:40:51Z | |
| dc.description.abstract | For a non-decreasing sequence π = (π 1, π 2,β¦) of positive integers, a partition of the vertex set of a graph πΊ into subsets π1,β¦,ππ, such that vertices in ππ are pairwise at distance greater than π π for every π β {1,β¦,π}, is called an π-packing π-coloring of πΊ. The minimum π for which πΊ admits an π-packing π-coloring is called the π-packing chromatic number of πΊ. In this paper, we consider π-packing colorings of the integer distance graphs with respect two positive integers π and π‘, which are the graphs whose vertex set is β€, and two vertices π₯, π¦ β β€ are adjacent whenever |π₯βπ¦| β {π,π‘}. We complement partial results from two earlier papers, thus determining all values of the π-packing chromatic numbers of these distance graphs for all sequence π such that π π β€ 2 for all π. In particular, if π = (1, 1, 2, 2,β¦), then the π-packing chromatic number is 2 if π + π‘ is even, and 4 otherwise, while if π = (1, 2, 2,β¦), then the π-packing chromatic number is 5, unless {π,π‘} = {2, 3} when it is 6; when π = (2, 2, 2,β¦), the corresponding formula is more complex. | en |
| dc.format | 13 | |
| dc.identifier.document-number | 001361776400001 | |
| dc.identifier.doi | 10.1016/j.amc.2024.129200 | |
| dc.identifier.issn | 0096-3003 | |
| dc.identifier.obd | 43945384 | |
| dc.identifier.orcid | Holub, PΕemysl 0000-0001-9528-7769 | |
| dc.identifier.orcid | MelicharovΓ‘, Petra 0009-0006-6448-8131 | |
| dc.identifier.orcid | BreΕ‘ar, BoΕ‘tjan 0000-0001-8471-4796 | |
| dc.identifier.orcid | Ferme, Jasmina 0000-0003-1584-9130 | |
| dc.identifier.orcid | Jakovac, Marko 0000-0002-4136-7365 | |
| dc.identifier.uri | http://hdl.handle.net/11025/60679 | |
| dc.language.iso | en | |
| dc.relation.ispartofseries | Applied Mathematics and Computation | |
| dc.rights.access | A | |
| dc.subject | S-packing coloring | en |
| dc.subject | S-packing chromatic number | en |
| dc.subject | distance graph | en |
| dc.subject | distance coloring | en |
| dc.title | S-packing colorings of distance graphs with distance sets of cardinality 2 | en |
| dc.type | ΔlΓ‘nek v databΓ‘zi WoS (Jimp) | |
| dc.type | ΔLΓNEK | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 789399 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85209351645 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- published in AMC.pdf
- Size:
- 770.9 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: