Identification of thermal model of power module using expectation-maximization algorithm
| dc.contributor.author | Ševčík, Jakub | |
| dc.contributor.author | Šmídl, Václav | |
| dc.contributor.author | Votava, Martin | |
| dc.date.accessioned | 2020-03-30T10:00:26Z | |
| dc.date.available | 2020-03-30T10:00:26Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | Prediction of junction temperatures in power semiconductor modules is essential to improve reliability of the device and prevent module failures due to thermal stress. Lumped parameter network is a popular approach for temperature modeling. Calibration of the thermal model is based on thermal measurements of the junction temperatures that are difficult to obtain. We aim to combine the knowledge of internal model structure and as little measurements as possible. Specifically, we use a state space thermal model with structure determined by the module layout, and propose to use the Expectation-Maximization algorithm from that can utilize data from different incomplete experiments. The identification procedure is introduced in detail in this paper and the applicability of the proposed approach is demonstrated on simulated and experimental data. | en |
| dc.format | 7 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | ŠEVČÍK, J., ŠMÍDL, V., VOTAVA, M. Identification of thermal model of power module using expectation-maximization algorithm. In: Proceedings : IECON 2019 : 45th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2019. s. 1-7. ISBN 978-1-72814-878-6. | en |
| dc.identifier.doi | 10.1109/IECON.2019.8927553 | |
| dc.identifier.isbn | 978-1-72814-878-6 | |
| dc.identifier.obd | 43927141 | |
| dc.identifier.uri | http://hdl.handle.net/11025/36803 | |
| dc.language.iso | en | en |
| dc.project.ID | EF18_069/0009855/Elektrotechnické technologie s vysokým podílem vestavěné inteligence | cs |
| dc.project.ID | SGS-2018-009/Výzkum a vývoj perspektivních technologií v elektrických pohonech a strojích III | cs |
| dc.publisher | IEEE | en |
| dc.relation.ispartofseries | Proceedings : IECON 2019 : 45th Annual Conference of the IEEE Industrial Electronics Society | en |
| dc.rights | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. | cs |
| dc.rights | © IEEE | en |
| dc.rights.access | restrictedAccess | en |
| dc.subject.translated | thermal network | en |
| dc.subject.translated | state space model | en |
| dc.subject.translated | system identification | en |
| dc.subject.translated | expectation-maximization algorithm | en |
| dc.subject.translated | power semiconductor module | en |
| dc.title | Identification of thermal model of power module using expectation-maximization algorithm | en |
| dc.type | konferenční příspěvek | cs |
| dc.type | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |