Overview of SnakeCLEF 2023: Snake Identification in Medically Important Scenarios

dc.contributor.authorPicek, Lukáš
dc.contributor.authorChamidullin, Rail
dc.contributor.authorHrúz, Marek
dc.contributor.authorDurso, Andrew M.
dc.date.accessioned2025-06-20T08:55:31Z
dc.date.available2025-06-20T08:55:31Z
dc.date.issued2023
dc.date.updated2025-06-20T08:55:31Z
dc.description.abstractDeveloping an effective automatic system for snake species identification has significant importance for biodiversity, conservation, and global health. Snakebites result in over half a million deaths and disabilities worldwide each year, highlighting the urgent need for a system to enhance co-epidemiological data and improve treatment outcomes, especially in remote regions that lack the necessary expertise and data but have high snake diversity and a high incidence of snakebites. The SnakeCLEF challenge provide an evaluation ground that helps track the performance of AI-driven methods for snake species recognition systems on a global scale. The fourth edition of the SnakeCLEF challenge focuses on (i) evaluation of gradual improvements in automatic snake species identification, (ii) testing worldwide generalization on two specific scenarios, i.e., India and Central America, and (iii) evaluation with uneven costs for different errors, such as mistaking a venomous snake for a harmless one. This paper showcases the vital role of a robust automatic identification system for snakes, particularly in regions with limited resources, and highlights the potential impact on biodiversity conservation and global health outcomes. We report (i) a comprehensive description of the provided data, (ii) an evaluation methodology, (iii) an overview of the submitted methods, and (iv) perspectives derived from the achieved results.en
dc.format14
dc.identifier.isbnneuvedeno
dc.identifier.issn1613-0073
dc.identifier.obd43940635
dc.identifier.orcidPicek, Lukáš 0000-0002-6041-9722
dc.identifier.orcidChamidullin, Rail 0000-0003-1728-8939
dc.identifier.orcidHrúz, Marek 0000-0002-7851-9879
dc.identifier.urihttp://hdl.handle.net/11025/61585
dc.language.isoen
dc.project.IDSGS-2022-017
dc.project.IDSS05010008
dc.publisherCEUR-WS
dc.relation.ispartofseries24th Working Notes of the Conference and Labs of the Evaluation Forum, CLEF-WN 2023
dc.subjectLifeCLEFen
dc.subjectSnakeCLEFen
dc.subjectfine grained visual categorizationen
dc.subjectglobal healthen
dc.subjectepidemiologyen
dc.subjectsnake biteen
dc.subjectsnakeen
dc.subjectreptileen
dc.subjectbenchmarken
dc.subjectbiodiversityen
dc.subjectspecies identificationen
dc.subjectmachine learningen
dc.subjectcomputer visionen
dc.subjectclassificationen
dc.titleOverview of SnakeCLEF 2023: Snake Identification in Medically Important Scenariosen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size14584011*
local.has.filesyes*
local.identifier.eid2-s2.0-85175657866

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
paper-168.pdf
Size:
13.91 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: