Multi-sensor fault diagnosis of induction motors using random forests and support vector machine

dc.contributor.authorSaberi, Alireza Nemat
dc.contributor.authorSandirasegaram, Sarvavignoban
dc.contributor.authorBelahcen, Anouar
dc.contributor.authorVaimann, Toomas
dc.contributor.authorŠobra, Jan
dc.date.accessioned2021-01-25T11:00:26Z
dc.date.available2021-01-25T11:00:26Z
dc.date.issued2020
dc.description.abstract-translatedThis paper presents a fault diagnosis scheme for induction machines (IMs) using Support Vector Machine (SVM) and Random Forests (RFs). First, a number of timedomain and frequency-domain features are extracted from vibration and current signals in different operating conditions of IM. Then, these features are combined and considered as the input of SVM-based classification model. To avoid overfitting, RF is utilized to determine the most dominant features contributing to accurate classification. It is proved that the proposed method is capable of achieving highly accurate fault diagnosis results for broken rotor bar and eccentricity faults and it can approen
dc.format7 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationSABERI, A.N., SANDIRASEGARAM, S., BELAHCEN, A., VAIMANN, T., ŠOBRA, J. Multi-sensor fault diagnosis of induction motors using random forests and support vector machine. In: Proceedings : 2020 International Conference on Electrical Machines (ICEM 2020). Piscataway: IEEE, 2020. s. 1404-1410. ISBN 978-1-72819-945-0.cs
dc.identifier.doi10.1109/ICEM49940.2020.9270689
dc.identifier.isbn978-1-72819-945-0
dc.identifier.obd43931209
dc.identifier.uri2-s2.0-85098620675
dc.identifier.urihttp://hdl.handle.net/11025/42546
dc.language.isoenen
dc.publisherIEEEen
dc.relation.ispartofseriesProceedings : 2020 International Conference on Electrical Machines (ICEM 2020)en
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© IEEEen
dc.rights.accessrestrictedAccessen
dc.subject.translatedfault diagnosisen
dc.subject.translatedinduction motoren
dc.subject.translatedmachine learningen
dc.subject.translatedmultiple signal classificationen
dc.subject.translatedsupport vector machineen
dc.titleMulti-sensor fault diagnosis of induction motors using random forests and support vector machineen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files