Neighbourhood Graphs and Locally Minimal Triangulations
| dc.contributor.author | Kolingerová, Ivana | |
| dc.contributor.author | Vomáčka, Tomáš | |
| dc.contributor.author | Maňák, Martin | |
| dc.contributor.author | Ferko, Andrej | |
| dc.date.accessioned | 2019-04-01T10:00:13Z | |
| dc.date.available | 2019-04-01T10:00:13Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | Grafy sousednosti (proximity), jako je graf nejbližších sousedů, nejbližší dvojice, graf relativního sousedství a graf k nejbližších sousedů jsou nástroje užitečné v mnoha problémech, kde se zkoumají vzájemné vztahy, podobnost a blízkost objektů. Článek se věnuje vztahu grafů sousednosti k lokálně minimální triangulaci (LMT) a ukazuje, že ve většině případů LMT obsahuýje všechny hrany | cs |
| dc.description.abstract-translated | Neighbourhood (or proximity) graphs, such as nearest neighbour graph, closest pairs, relative neighbourhood graph and k-nearest neighbour graph are useful tools in many tasks inspecting mutual relations, similarity and closeness of objects. Some of neighbourhood graphs are subsets of Delaunay triangulation (DT) and this relation can be used for efficient computation of these graphs. This paper concentrates on relation of neighbourhood graphs to the locally minimal triangulation (LMT) and shows that, although generally these graphs are not LMT subgraphs, in most cases LMT contains all or many edges of these graphs. This fact can also be used for the neighbourhood graphs computation, namely in kinetic problems, because LMT computation is easier. | en |
| dc.format | 13 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | KOLINGEROVÁ, I., VOMÁČKA, T., MAŇÁK, M., FERKO, A. Neighbourhood Graphs and Locally Minimal Triangulations. In Transsaction on Computational Scieneced XXXIII. Heidelberg: Springer, 2018. s. 115-127. ISBN: 978-3-662-58038-7 | en |
| dc.identifier.doi | 10.1007/978-3-662-58039-4_7 | |
| dc.identifier.isbn | 978-3-662-58038-7 | |
| dc.identifier.obd | 43925713 | |
| dc.identifier.uri | 2-s2.0-85053464812 | |
| dc.identifier.uri | http://hdl.handle.net/11025/33839 | |
| dc.language.iso | en | en |
| dc.project.ID | LO1506/PUNTIS - Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost | cs |
| dc.project.ID | GA17-07690S/Metody identifikace a vizualizace tunelů pro flexibilní ligandy v dynamických proteinech | cs |
| dc.publisher | Springer | en |
| dc.relation.ispartofseries | Transsaction on Computational Scieneced XXXIII | en |
| dc.rights | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. | cs |
| dc.rights | © Springer | en |
| dc.rights.access | restrictedAccess | en |
| dc.subject | graf nejbližších sousedů | cs |
| dc.subject | graf k nejbližších sousedů | cs |
| dc.subject | lokálně minimální triangulace | cs |
| dc.subject | Delaunayova triangulace | cs |
| dc.subject | kinetický problém | cs |
| dc.subject.translated | Nearest neighbour graph | en |
| dc.subject.translated | K-nearest neighbour graph | en |
| dc.subject.translated | Locally minimal triangulation | en |
| dc.subject.translated | Delaunay triangulation | en |
| dc.subject.translated | Kinetic problem | en |
| dc.title | Neighbourhood Graphs and Locally Minimal Triangulations | en |
| dc.title.alternative | Grafy sousednosti a lokálně minimální triangulace | cs |
| dc.type | konferenční příspěvek | cs |
| dc.type | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |