Object Detection Pipeline Using YOLOv8 for Document Information Extraction

dc.contributor.authorStraka, Jakub
dc.contributor.authorGruber, Ivan
dc.date.accessioned2025-06-20T08:55:21Z
dc.date.available2025-06-20T08:55:21Z
dc.date.issued2023
dc.date.updated2025-06-20T08:55:21Z
dc.description.abstractThe extraction of information from semi-structured documents is an ongoing problem. This task is often approached from the perspective of NLP and large transformer-based models are employed. In our work, we successfully demonstrated that the Key Information Localization and Extraction (KILE) and Line Item Recognition (LIR) tasks can be effectively addressed as object detection problems using a convolutional neural network (CNN) model. We utilized a relatively small and fast YOLOv8 model for which we conducted a series of experiments to explore the impact of different factors on model training. With YOLOv8, we were able to achieve AP 0.716 on the KILE task and 0.638 on the LIR task. Our code is available at https://github.com/strakaj/YOLOv8-for-document-understanding.git.en
dc.format15
dc.identifier.isbnneuvedeno
dc.identifier.issn1613-0073
dc.identifier.obd43940625
dc.identifier.orcidStraka, Jakub 0000-0002-9981-1326
dc.identifier.orcidGruber, Ivan 0000-0003-2333-433X
dc.identifier.urihttp://hdl.handle.net/11025/61572
dc.language.isoen
dc.project.IDSGS-2022-017
dc.project.ID90254
dc.publisherCEUR-WS
dc.relation.ispartofseries24th Working Notes of the Conference and Labs of the Evaluation Forum, CLEF-WN 2023
dc.subjectDocument Understanding, Document Information Extraction, Object Detection, YOLOv8, Line Item Recognition, Key Information Localization and Extractionen
dc.titleObject Detection Pipeline Using YOLOv8 for Document Information Extractionen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size9698896*
local.has.filesyes*
local.identifier.eid2-s2.0-85175640514

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
paper-051.pdf
Size:
9.25 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: