Grid-Based Bayesian Filters With Functional Decomposition of Transient Density
| dc.contributor.author | Tichavský, Petr | |
| dc.contributor.author | Straka, Ondřej | |
| dc.contributor.author | Duník, Jindřich | |
| dc.date.accessioned | 2025-06-20T08:50:01Z | |
| dc.date.available | 2025-06-20T08:50:01Z | |
| dc.date.issued | 2023 | |
| dc.date.updated | 2025-06-20T08:50:01Z | |
| dc.description.abstract | The paper deals with the state estimation of nonlinear stochastic dynamic systems with special attention to grid-based Bayesian filters such as the point-mass filter (PMF) and the marginal particle filter (mPF). In the paper, a novel functional decomposition of the transient density describing the system dynamics is proposed. The decomposition approximates the transient density in a closed region. It is based on a non-negative matrix/tensor factorization and separates the density into functions of the future and current states. Such decomposition facilitates a thrifty calculation of the convolution involving the density, which is a performance bottleneck of the standard PMF/mPF implementations. The estimate quality and computational costs can be efficiently controlled by choosing an appropriate decomposition rank. The performance of the PMF with the transient density decomposition is illustrated in a terrain-aided navigation scenario and a problem involving a univariate non-stationary growth model. | en |
| dc.format | 13 | |
| dc.identifier.document-number | 000935455200003 | |
| dc.identifier.doi | 10.1109/TSP.2023.3240359 | |
| dc.identifier.issn | 1053-587X | |
| dc.identifier.obd | 43940684 | |
| dc.identifier.orcid | Tichavský, Petr 0000-0003-0621-4766 | |
| dc.identifier.orcid | Straka, Ondřej 0000-0003-3066-5882 | |
| dc.identifier.orcid | Duník, Jindřich 0000-0003-1460-8845 | |
| dc.identifier.uri | http://hdl.handle.net/11025/61356 | |
| dc.language.iso | en | |
| dc.project.ID | SGS-2022-022 | |
| dc.project.ID | GA22-11101S | |
| dc.relation.ispartofseries | IEEE Transactions on Signal Processing | |
| dc.rights.access | C | |
| dc.subject | State estimation | en |
| dc.subject | nonlinear systems | en |
| dc.subject | nonlinear filtering | en |
| dc.subject | point-mass method | en |
| dc.subject | non-negative matrix factorization | en |
| dc.title | Grid-Based Bayesian Filters With Functional Decomposition of Transient Density | en |
| dc.type | Článek v databázi WoS (Jimp) | |
| dc.type | ČLÁNEK | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 2373100 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85148417650 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- article_IEEE_TSP_TiStDu.pdf
- Size:
- 2.26 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: