Mirroring in lattice equations and a related functional equation

dc.contributor.authorHesoun, Jakub
dc.contributor.authorStehlík, Petr
dc.contributor.authorVolek, Jonáš
dc.date.accessioned2025-06-20T08:33:31Z
dc.date.available2025-06-20T08:33:31Z
dc.date.issued2024
dc.date.updated2025-06-20T08:33:31Z
dc.description.abstractWe use a functional form of the mirroring technique to fully characterize equivalence classes of unbounded stationary solutions of lattice reaction-diffusion equations with eventually negative and decreasing nonlinearities. We show that solutions which connect a stable fixed point of the nonlinearity with infinity can be characterized by a single parameter from a bounded interval. Within a two-dimensional parametric space, these solutions form a boundary to an existence region of solutions which diverge in both directions. Additionally, we reveal a natural relationship of lattice equations with an interesting functional equation which involves an unknown function and its inverse.en
dc.format21
dc.identifier.document-number001397038300001
dc.identifier.doi10.14232/ejqtde.2024.1.65
dc.identifier.issn1417-3875
dc.identifier.obd43945868
dc.identifier.orcidHesoun, Jakub 0000-0003-1610-4034
dc.identifier.orcidStehlík, Petr 0000-0003-0585-020X
dc.identifier.orcidVolek, Jonáš 0000-0003-3049-8260
dc.identifier.urihttp://hdl.handle.net/11025/60157
dc.language.isoen
dc.project.IDGA22-18261S
dc.relation.ispartofseriesElectronic Journal of Qualitative Theory of Differential Equations
dc.rights.accessA
dc.subjectNagumo equationen
dc.subjectlattice differential equationen
dc.subjectpatternsen
dc.subjectunbounded solutionsen
dc.subjectequivalence classen
dc.titleMirroring in lattice equations and a related functional equationen
dc.typeČlánek v databázi WoS (Jimp)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size838861*
local.has.filesyes*
local.identifier.eid2-s2.0-85211080468

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
HesounStehlikVolek_Mirroring_2024.pdf
Size:
819.2 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections