A closure for Hamilton-connectedness in {K1,3,Γ3}-free graphs

dc.contributor.authorKabela, Adam
dc.contributor.authorRyjáček, Zdeněk
dc.contributor.authorSkyvová, Mária
dc.contributor.authorVrána, Petr
dc.date.accessioned2025-06-20T08:54:49Z
dc.date.available2025-06-20T08:54:49Z
dc.date.issued2024
dc.date.updated2025-06-20T08:54:49Z
dc.description.abstractWe introduce a closure technique for Hamilton-connectedness of {K(1,3),Gamma(3)}-free graphs, where Gamma(3) is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. The closure turns a claw-free graph into a line graph of a multigraph while preserving its (non)-Hamilton-connectedness. The most technical parts of the proof are computer-assisted.The main application of the closure is given in a subsequent paper showing that every 3-connected {K(1,3),Gamma(3)}-free graph is Hamilton-connected, thus resolving one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness.en
dc.format17
dc.identifier.document-number001273757900001
dc.identifier.doi10.1016/j.disc.2024.114154
dc.identifier.issn0012-365X
dc.identifier.obd43943345
dc.identifier.orcidKabela, Adam 0000-0002-0430-1797
dc.identifier.orcidRyjáček, Zdeněk 0000-0002-9877-0825
dc.identifier.orcidSkyvová, Mária 0000-0001-5077-8804
dc.identifier.orcidVrána, Petr 0000-0001-9246-474X
dc.identifier.urihttp://hdl.handle.net/11025/61520
dc.language.isoen
dc.project.IDGA20-09525S
dc.relation.ispartofseriesDiscrete Mathematics
dc.rights.accessC
dc.subjectHamilton-connecteden
dc.subjectclosureen
dc.subjectforbidden subgraphen
dc.subjectclaw-freeen
dc.subjectGamma(3)-freeen
dc.titleA closure for Hamilton-connectedness in {K1,3,Γ3}-free graphsen
dc.typeČlánek v databázi WoS (Jimp)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size1493305*
local.has.filesyes*
local.identifier.eid2-s2.0-85198570713

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
1-s2.0-S0012365X24002851-main.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections