Towards a grasping-oriented categorization of rigid industrial objects to support automatic grasping of 3D CAD models in virtual ergonomics

dc.contributor.authorTiaya-Tedonchio, Christian
dc.contributor.authorRivest, Louis
dc.contributor.authorLemieux, Pierre-Olivier
dc.contributor.editorSkala, Václav
dc.date.accessioned2025-07-30T10:14:07Z
dc.date.available2025-07-30T10:14:07Z
dc.date.issued2025
dc.description.abstract-translatedThe use of automatic analysis of 3D CAD models to identify a variety of plausible grasp locations on unknown objects with complex shapes and no affordances is a current concern in virtual ergonomics. In robotics, researchers approached this problem by grouping objects into categories related to geometric characteristics. Category-level grasping approaches have been little explored in virtual ergonomics. This paper introduces grasping-oriented categorization for rigid industrial objects to support the identification of a variety of plausible grasp locations in virtual ergonomics. First, we performed a rough analysis of objects’ convexity and define two high-level categories: global dominant shapes and local dominant shapes. Second, we propose a more detailed categorization of objects to sort them into four specific categories: 1- threadlike objects, 2- thin objects, 3- small objects, and 4- large and thick objects. Then, we explode those categories based on the presence or lack of holes or protrusions that are useful for grasping. This grasping-oriented categorization of objects is used to manually categorize a subset of 242 real rigid industrial objects. We obtained 27.3% threadlike objects, 43.8% thin objects, 2% small objects, 24.3% large and thick objects and 2.6% uncategorized objects. Our future work will pertain to develop approaches for automatically categorize unknown objects and approaches for automatically identifying variety of plausible grasp locations on objects of given categories in virtual ergonomics.en
dc.description.sponsorshipWe wish to thank Dassault System Canada, our industrial partner on this research project, as well as MITACS for funding.
dc.format12 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.doihttp://www.doi.org/10.24132/CSRN.2025-24
dc.identifier.issn2464-4617 (Print)
dc.identifier.issn2464-4625 (online)
dc.identifier.urihttp://hdl.handle.net/11025/62234
dc.language.isoenen
dc.publisherVaclav Skala - UNION Agencyen
dc.rights© Vaclav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectCAD modelycs
dc.subjectkategorizacecs
dc.subjectrobotikacs
dc.subjectvirtuální ergonomiecs
dc.subjectuchopení místacs
dc.subjectneznámé objektycs
dc.subjectsložitý tvarcs
dc.subject.translatedCAD modelsen
dc.subject.translatedcategorizationen
dc.subject.translatedroboticsen
dc.subject.translatedvirtual ergonomicsen
dc.subject.translatedgrasp locationen
dc.subject.translatedunknown objectsen
dc.subject.translatedcomplex shapeen
dc.titleTowards a grasping-oriented categorization of rigid industrial objects to support automatic grasping of 3D CAD models in virtual ergonomicsen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer revieweden
dc.type.versionpublishedVersionen
local.files.count1*
local.files.size3225143*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
C79.pdf
Size:
3.08 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: