Design of Efficient Point-Mass Filter with Terrain Aided Navigation Illustration

dc.contributor.authorMatoušek, Jakub
dc.contributor.authorDuník, Jindřich
dc.contributor.authorBrandner, Marek
dc.date.accessioned2025-06-20T08:56:00Z
dc.date.available2025-06-20T08:56:00Z
dc.date.issued2023
dc.date.updated2025-06-20T08:56:00Z
dc.description.abstractThis paper deals with state estimation of stochastic models with linear state dynamics, continuous or discrete in time. The emphasis is laid on a numerical solution to the state prediction by the time-update step of the grid-point-based point-mass filter (PMF), which is the most computationally demanding part of the PMF algorithm. A novel efficient PMF (ePMF) estimator, unifying continuous and discrete, approaches is proposed, designed, and discussed. By numerical illustrations, it is shown, that the proposed ePMF can lead to a time complexity reduction that exceeds 99.9% without compromising accuracy. The MATLAB® code of the ePMF is released with this paper.en
dc.format8
dc.identifier.doi10.23919/FUSION52260.2023.10224172
dc.identifier.isbn979-8-89034-485-4
dc.identifier.issnneuvedeno
dc.identifier.obd43940675
dc.identifier.orcidMatoušek, Jakub 0000-0001-5014-1088
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.orcidBrandner, Marek 0000-0002-4295-1854
dc.identifier.urihttp://hdl.handle.net/11025/61621
dc.language.isoen
dc.project.IDSGS-2022-022
dc.publisherIEEE
dc.relation.ispartofseries2023 26th International Conference on Information Fusion, FUSION 2023
dc.subjectstate estimationen
dc.subjecttransition probability matrixen
dc.subjectChapman-Kolmogorov equationen
dc.subjectFokker-Planck equationen
dc.subjectpoint-mass filteren
dc.subjectconvolutionen
dc.subjectterrain-aided navigationen
dc.titleDesign of Efficient Point-Mass Filter with Terrain Aided Navigation Illustrationen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size781536*
local.has.filesyes*
local.identifier.eid2-s2.0-85171554870

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_FUSION23_MaDuBr.pdf
Size:
763.22 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: