Machine learning approach to automate facial expressions from physical activity

dc.contributor.authorBoukhalfi, Tarik
dc.contributor.authorDesrosiers, Christian
dc.contributor.authorPaquette, Eric
dc.contributor.editorSkala, Václav
dc.contributor.editorGavrilova, Marina
dc.date.accessioned2018-03-13T10:07:51Z
dc.date.available2018-03-13T10:07:51Z
dc.date.issued2015
dc.description.abstractWe propose a novel approach based on machine learning to simulate facial expressions related to physical activity. Because of the various factors they involve, such as psychological and biomechanical, facial expressions are complex to model. While facial performance capture provides the best results, it is costly and difficult to use for real-time interaction during intense physical activity. A number of methods exist to automate facial animation related to speech or emotion, but there are no methods to automate facial expressions related to physical activity. This leads to unrealistic 3D characters, especially when performing intense physical activity. This research highlights the link between physical activity and facial expression, and to propose a data-driven approach providing realistic facial expressions, while leaving creative control. First, biological, mechanical, and facial expression data are captured. This information is then used to train regression trees and support vector machine (SVM) models, which predict facial expressions of virtual characters from their 3D motion. The proposed approach can be used with real-time, pre-recorded or key-framed animations, making it suitable for video games and movies as well.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG 2015: full papers proceedings: 23rd International Conference in Central Europeon Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 81-88.en
dc.identifier.isbn978-80-86943-65-7 (print)
dc.identifier.isbn978-80-86943-61-9 (CD-ROM)
dc.identifier.issn2464–4617 (print)
dc.identifier.issn2464–4625 (CD-ROM)
dc.identifier.uriwscg.zcu.cz/WSCG2015/CSRN-2501.pdf
dc.identifier.urihttp://hdl.handle.net/11025/29354
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesWSCG 2015: full papers proceedingsen
dc.rights© Václav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectobličejová animacecs
dc.subjectbiomechanikacs
dc.subjectfyzická aktivitacs
dc.subjectstrojové učenícs
dc.subject.translatedfacial animationen
dc.subject.translatedbiomechanicsen
dc.subject.translatedphysical activityen
dc.subject.translatedmachine learningen
dc.titleMachine learning approach to automate facial expressions from physical activityen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Boukhalfi.pdf
Size:
6.56 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
OPEN License Selector