Application of data dependent discrete Laplacian

dc.contributor.authorDvořák, Jan
dc.contributor.editorRendl, Jan
dc.date.accessioned2018-07-10T13:06:01Z
dc.date.available2018-07-10T13:06:01Z
dc.date.issued2018
dc.description.abstract-translatedLaplace operator is extensively used in geometry processing. In the continuous setting, it is very well understood. It has also some quite interesting properties. Its generalization to the discrete case is, however, ambiguous. Various discretizations exist, differing mainly in the weights used in the discretized formula. Each of the discretizations preserves a different subset of properties (or their discrete equivalents) of the smooth Laplace operator. It can be proven, that no discretization can preserve a certain set of those properties at once. This makes each discretization suitable for different purposes. As part of this work, a new discretization of the Laplace operator is proposed, minimizing the lengths of differential coordinates used in the compression of dynamic triangle meshes. It is based on the assumption, that such minimization of lengths should cause a decrease of the entropy of the encoded data. It has one other big advantage over other discretizations that require the geometry information - it can be constructed from geometry of more than one mesh without requiring any complex analysis of the shapes of those meshes.en
dc.description.sponsorshipTento projekt byl podpořen Ministerstvem školství, mládeže a tělovýchovy České republiky v rámci projektu SGS 2016-013. Studentská vědecká konference je pořádána s podporou prostředků na specifický vysokoškolský výzkum SVK1-2018-024.cs
dc.format2 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationRENDL, Jan ed. Studentská vědecká konference: magisterské a doktorské studijní programy, sborník rozšířených abstraktů, květen 2018, Plzeň. Plzeň: Západočeská univerzita v Plzni, 2019, s. 36-37. ISBN 978-80-261-0790-3.cs
dc.identifier.isbn978-80-261-0790-3
dc.identifier.urihttp://hdl.handle.net/11025/29814
dc.identifier.urihttp://svk.fav.zcu.cz/download/sbornik_svk_2018.pdf
dc.language.isoenen
dc.publisherZápadočeská univerzita v Plznics
dc.rights© Západočeská univerzita v Plznics
dc.rights.accessopenAccessen
dc.subjectpočítačové zpracování obrazucs
dc.subjectLaplaceův operátorcs
dc.subjectkomprese mřížkycs
dc.subject.translatedcomputer image processingen
dc.subject.translatedLaplace operatoren
dc.subject.translatedmesh compressionen
dc.titleApplication of data dependent discrete Laplacianen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Dvorak.pdf
Size:
420.49 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: