Thermal conductivity of Fe-Si alloys and thermal stratification in Earth's core

dc.contributor.authorZhang, Youjun
dc.contributor.authorLuo, Kai
dc.contributor.authorHou, Mingqiang
dc.contributor.authorDriscoll, Peter
dc.contributor.authorSalke, Nilesh P.
dc.contributor.authorMinár, Jan
dc.contributor.authorPrakapenka, Vitali B.
dc.contributor.authorGreenberg, Eran
dc.contributor.authorHemley, Russell J.
dc.contributor.authorCohen, R. E.
dc.contributor.authorLin, Jung-Fu
dc.date.accessioned2022-02-28T11:00:28Z
dc.date.available2022-02-28T11:00:28Z
dc.date.issued2021
dc.description.abstract-translatedLight elements in Earth’s core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron–electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 Wm21K21 for liquid Fe-9Si near the topmost outer core. If Earth’s core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core–mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core–mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core. © 2022 National Academy of Sciences. All rights reserved.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationZHANG, Y. LUO, K. HOU, M. DRISCOLL, P. SALKE, NP. MINÁR, J. PRAKAPENKA, VB. GREENBERG, E. HEMLEY, RJ. COHEN, RE. LIN, J. Thermal conductivity of Fe-Si alloys and thermal stratification in Earth's core. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, roč. 119, č. 1, s. nestránkováno. ISSN: 0027-8424cs
dc.identifier.document-number748065500006
dc.identifier.doi10.1073/pnas.2119001119
dc.identifier.issn0027-8424
dc.identifier.obd43935071
dc.identifier.uri2-s2.0-85122700628
dc.identifier.urihttp://hdl.handle.net/11025/47054
dc.language.isoenen
dc.project.IDEF15_003/0000358/Výpočetní a experimentální design pokročilých materiálů s novými funkcionalitamics
dc.publisherNational Academy of Sciencesen
dc.relation.ispartofseriesProceedings Of The National Academy Of Sciences Of The United States Of Americaen
dc.rights© National Academy of Sciencesen
dc.rights.accessopenAccessen
dc.subject.translateddiamond anvil cellen
dc.subject.translatedEarth’s coreen
dc.subject.translatedgeodynamoen
dc.subject.translatedlight elementsen
dc.subject.translatedthermal conductivityen
dc.titleThermal conductivity of Fe-Si alloys and thermal stratification in Earth's coreen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files