Approximate fusion of probability density functions using Gaussian copulas

dc.contributor.authorAjgl, Jiří
dc.contributor.authorStraka, Ondřej
dc.date.accessioned2025-06-20T08:55:41Z
dc.date.available2025-06-20T08:55:41Z
dc.date.issued2023
dc.date.updated2025-06-20T08:55:41Z
dc.description.abstractSubjective Bayesian estimation perceives probability density functions as expert opinions. Among various rules for combining the opinions, the product and the weighted geometric mean of densities are prominent. Nevertheless, closed-form representations are scarce and non-parametric approaches often suffer from the curse of dimensionality. This paper prospects the fusion of densities represented by non-parametric marginal densities and a parametric Gaussian copula. The explicit reconstruction of the joint densities followed by an optimisation step is avoided. A cheap approximate combination is proposed instead. The combination of marginal densities is tuned by a Gaussian term, while the proposed copula parameter uses moments of the marginal densities. The presented examples illustrate the approximative nature of the approach for non-Gaussian densities and highlight some numerical issues.en
dc.format7
dc.identifier.doi10.23919/FUSION52260.2023.10224201
dc.identifier.isbn979-8-89034-485-4
dc.identifier.issnneuvedeno
dc.identifier.obd43940665
dc.identifier.orcidAjgl, Jiří 0000-0001-7863-9697
dc.identifier.orcidStraka, Ondřej 0000-0003-3066-5882
dc.identifier.urihttp://hdl.handle.net/11025/61598
dc.language.isoen
dc.project.IDSGS-2022-022
dc.project.IDGA22-11101S
dc.publisherIEEE
dc.relation.ispartofseries2023 26th International Conference on Information Fusion
dc.subjectGaussian copulasen
dc.subjectsubjective Bayesen
dc.subjectinformation fusionen
dc.subjectnonlinear filteringen
dc.subjectanalytical approximationen
dc.titleApproximate fusion of probability density functions using Gaussian copulasen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size531033*
local.has.filesyes*
local.identifier.eid2-s2.0-85171557710

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_FUSION23_AjSt.pdf
Size:
518.59 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: