Modernized Training of U-Net for Aerial Semantic Segmentation

dc.contributor.authorStraka, Jakub
dc.contributor.authorGruber, Ivan
dc.date.accessioned2025-06-20T08:36:14Z
dc.date.available2025-06-20T08:36:14Z
dc.date.issued2024
dc.date.updated2025-06-20T08:36:14Z
dc.description.abstractIn this paper, we propose an improved training protocol of U-Net architecture for the semantic segmentation of aerial images. We test our approach on the challenging FLAIR #2 dataset. We present an extensive ablation study on the influence of different approach components on the overall performance. The ablation study includes a comparison of different model backbones, image augmentations, learning rate schedulers, loss functions, and training procedures. We additionally propose a two-stage training procedure and evaluate different options for the model ensemble. Based on the results we design the final setup of the model training protocol. This final setup decreases the relative error by approximately 18% and achieves mIoU equal to 0.641, which is a new state-of-the-art result. Our code is available at: https://github.com/strakaj/U-Net-for-remote-sensingen
dc.format9
dc.identifier.document-number001223022200092
dc.identifier.doi10.1109/WACVW60836.2024.00091
dc.identifier.isbn979-8-3503-7028-7
dc.identifier.issn2572-4398
dc.identifier.obd43944191
dc.identifier.orcidStraka, Jakub 0000-0002-9981-1326
dc.identifier.orcidGruber, Ivan 0000-0003-2333-433X
dc.identifier.urihttp://hdl.handle.net/11025/60363
dc.language.isoen
dc.project.IDSGS-2022-017
dc.project.ID90254
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.ispartofseries2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, WACVW 2024
dc.subjectU-Neten
dc.subjectaerialen
dc.subjectsemantic segmentationen
dc.titleModernized Training of U-Net for Aerial Semantic Segmentationen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size805139*
local.has.filesyes*
local.identifier.eid2-s2.0-85191707894

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Modernized_Training_of_U-Net_for_Aerial_Semantic_Segmentation.pdf
Size:
786.27 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: