Predicting Risk of Multiple Sclerosis Worsening

dc.contributor.authorHanzl, Marek
dc.contributor.authorPicek, Lukáš
dc.date.accessioned2025-06-20T08:43:56Z
dc.date.available2025-06-20T08:43:56Z
dc.date.issued2023
dc.date.updated2025-06-20T08:43:56Z
dc.description.abstractThis paper describes our participation in the first two tasks of the iDPP@CLEF 2023 challenge focused on providing clinicians with AI-based methods for better prediction of Multiple Sclerosis progression. We evaluate several standard and transformer-based methods, e.g., Random Forest, Gradient Boosting, and SurfTRACE transformer, to address the risk and cumulative probability of Multiple Sclerosis worsening. The considerable performance increase was achieved by (i) hyper-parameter fine-tuning, (ii) validation procedure, and (iii) data pre-processing. The best method based on the Random Forest algorithm scored first place in Task 1 and 2 (sub-task A) with a C-Index of 0.834, and a mean AUROC score of 0.881, respectively, while reducing the runner-up’s error by 16.2% and 2.3%, respectively. Our methods purely designed and optimized for sub-task A and submitted into sub-task B showed considerable robustness towards overfitting on a specific dataset as achieved third and second place and achieving 0.601 C-Index and second in Task 2, sub-task B of 0.607 mean AUROC score.en
dc.format13
dc.identifier.isbnneuvedeno
dc.identifier.issn1613-0073
dc.identifier.obd43940696
dc.identifier.orcidHanzl, Marek 0009-0008-0700-625X
dc.identifier.orcidPicek, Lukáš 0000-0002-6041-9722
dc.identifier.urihttp://hdl.handle.net/11025/60803
dc.language.isoen
dc.project.IDSGS-2022-017
dc.publisherCEUR-WS
dc.relation.ispartofseries24th Working Notes of the Conference and Labs of the Evaluation Forum, CLEF-WN 2023
dc.subjectMultiple Sclerosisen
dc.subjectartificial Intelligenceen
dc.subjectsurvival analysisen
dc.subjectGradient Boostingen
dc.subjecttransformersen
dc.titlePredicting Risk of Multiple Sclerosis Worseningen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size1305252*
local.has.filesyes*
local.identifier.eid2-s2.0-85175650475

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Hanzl_Picek_paper-101.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: