A conceptual deep learning framework for COVID-19 drug discovery

dc.contributor.authorJamshidi, Mohammad
dc.contributor.authorTalla, Jakub
dc.contributor.authorLalbakhsh, Ali
dc.contributor.authorSharifi-Atashgah, Maryam S.
dc.contributor.authorSabet, Asal
dc.contributor.authorPeroutka, Zdeněk
dc.date.accessioned2022-03-07T11:00:24Z
dc.date.available2022-03-07T11:00:24Z
dc.date.issued2021
dc.description.abstract-translatedThe analytical and experimental methods used for the development of drugs have some disadvantages in the aspect of the needed time for preparation of the desired parenthetical products and the efficiency of them, which not only can the risk for failure increase, particularly when pathogens are impossible to be cultivated under laboratory conditions, but these approaches can also lead to achieving arrays of antigens that are not able to provide sufficient immunity to combat the targeted disease. On the other hand, artificial intelligence (AI) and its new branches, including deep learning (DL) and machine learning (ML) techniques can be deployed for drug development purposes in order to alleviate the difficulties associated with conventional methods. Moreover, intelligent methods will provide researchers with the opportunity to use some userfriendly and efficient services to conquer such problems. In this respect, a conceptual DL framework has been studied in order to demonstrate the capability and applicability of these methods. Accordingly, a framework has been proposed to show how COVID-19 drug development can benefit from the potentials of AI and DL.en
dc.format5 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationJAMSHIDI, M. TALLA, J. LALBAKHSH, A. SHARIFI-ATASHGAH, MS. SABET, A. PEROUTKA, Z. A conceptual deep learning framework for COVID-19 drug discovery. In Proceedings of 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (IEEE UEMCON). Piscaway: IEEE, 2021. s. 0030-0034. ISBN: 978-1-66540-690-1cs
dc.identifier.doi10.1109/UEMCON53757.2021.9666715
dc.identifier.isbn978-1-66540-690-1
dc.identifier.obd43934862
dc.identifier.urihttp://hdl.handle.net/11025/47094
dc.language.isoenen
dc.project.IDEF18_069/0009855/Elektrotechnické technologie s vysokým podílem vestavěné inteligencecs
dc.publisherIEEEen
dc.relation.ispartofseriesProceedings of 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (IEEE UEMCON)en
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© IEEEen
dc.rights.accessrestrictedAccessen
dc.subject.translatedartificial intelligenceen
dc.subject.translatedbioinformaticsen
dc.subject.translatedcovid-19en
dc.subject.translateddeep learningen
dc.subject.translateddrug discoveryen
dc.subject.translatedRNAen
dc.subject.translatedmachine learningen
dc.titleA conceptual deep learning framework for COVID-19 drug discoveryen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files