Overview of FungiCLEF 2024: Revisiting Fungi Species Recognition Beyond 0-1 Cost

dc.contributor.authorPicek, Lukáš
dc.contributor.authorŠulc, Milan
dc.contributor.authorMatas, Jiří
dc.date.accessioned2025-06-20T08:38:10Z
dc.date.available2025-06-20T08:38:10Z
dc.date.issued2024
dc.date.updated2025-06-20T08:38:10Z
dc.description.abstractThe third edition of the fungi recognition challenge, FungiCLEF 2024, organized within LifeCLEF, advances the field of mushroom species identification using computer vision and machine learning. Building on the Danish Fungi 2020 dataset and incorporating new data from the CzechFungi app, FungiCLEF 2024 challenges participants to recognize fungi species from images and metadata, focusing on efficient inference and minimalization of edible and poisonous species confusion. The strict limits on computational complexity ensure that the resulting solutions are practical for use in real-world settings with limited computational resources. The competition attracted seven teams, with five outperforming the provided baseline, which was based on the pre-trained EfficientNet-B1 model. This overview paper provides (i) a comprehensive description of the challenge and provided baseline method, (ii) detailed characteristics of the dataset and task specifications, (iii) an examination of the methods employed by contestants, and (iv) a discussion of the competition outcomes. The results highlight incremental advancements in fungi recognition, showcasing innovative approaches and techniques that push the limits of previous work. © 2024 Copyright for this paper by its authors.en
dc.format8
dc.identifier.isbnneuvedeno
dc.identifier.issn1613-0073
dc.identifier.obd43943937
dc.identifier.orcidPicek, Lukáš 0000-0002-6041-9722
dc.identifier.urihttp://hdl.handle.net/11025/60567
dc.language.isoen
dc.project.IDSS73020004
dc.project.IDSS05010008
dc.publisherCEUR-WS
dc.relation.ispartofseries25th Working Notes of the Conference and Labs of the Evaluation Forum, CLEF 2024
dc.subjectLifeCLEFen
dc.subjectFungiCLEFen
dc.subjectfine-grained visual categorizationen
dc.subjectmetadataen
dc.subjectopen-set recognitionen
dc.subjectfungien
dc.subjectspecies identificationen
dc.subjectmachine learningen
dc.subjectcomputer visionen
dc.subjectclassificationen
dc.titleOverview of FungiCLEF 2024: Revisiting Fungi Species Recognition Beyond 0-1 Costen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size4033191*
local.has.filesyes*
local.identifier.eid2-s2.0-85201639635

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Overview of FungiCLEF 2024 Revisiting Fungi Species Recognition Beyond 01 Cost.pdf
Size:
3.85 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: