Traffic sign data augmentation using Stable Diffusion conditioned with ControlNet

dc.contributor.authorŽelezný, Tomáš
dc.date.accessioned2025-06-20T08:37:39Z
dc.date.available2025-06-20T08:37:39Z
dc.date.issued2024
dc.date.updated2025-06-20T08:37:39Z
dc.description.abstractWith the recent trend towards autonomous vehicles, traffic sign recognition has becomean important automotive task. Like other machine learning tasks, it requires large amountsof data. The datasets are often created using dashcam or similar videos and then manuallyannotated. As traffic signs are specific to each country, the datasets are expensive. Therefore,there’s a need to augment existing data to increase its diversity and size without incurring thehigh costs of manual annotation.Our goal is to apply strong augmentations to create a diverse dataset that remains realistic.We use the Stable Diffusion image generation model1 (Rombach et al. (2022)) and condition itusing ControlNet (Zhang (2023)) - a model specifically designed to condition Stable Diffusionusing another image. We train ControlNet to use Canny’s edge detection map as an input tocondition Stable Diffusion. This allows us to generate new realistic images as an extension tothe existing dataset.en
dc.format2
dc.identifier.isbn978-80-261-1228-0
dc.identifier.obd43945116
dc.identifier.orcidŽelezný, Tomáš 0000-0002-0974-7069
dc.identifier.urihttp://hdl.handle.net/11025/60513
dc.language.isoen
dc.project.IDSGS-2022-017
dc.publisherZápadočeská univerzita v Plzni
dc.relation.ispartofseriesStudentská vědecká konference Fakulty aplikovaných věd 2024
dc.subjecttraffic signen
dc.subjectdata augmentationen
dc.subjectstable diffusionen
dc.subjectControlNeten
dc.titleTraffic sign data augmentation using Stable Diffusion conditioned with ControlNeten
dc.typeStať ve sborníku (O)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size8072946*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
proceedings_svk_2024.pdf
Size:
7.7 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: