Overview of LifeCLEF 2023: evaluation of AI models for the identification and prediction of birds, plants, snakes and fungi

dc.contributor.authorJoly, Alexis
dc.contributor.authorBotella, Christophe
dc.contributor.authorPicek, Lukáš
dc.contributor.authorKahl, Stefan
dc.contributor.authorGoëau, Hervé
dc.contributor.authorDeneu, Benjamin
dc.contributor.authorMarcos, Diego
dc.contributor.authorEstopinan, Joaquim
dc.contributor.authorLeblanc, Cesar
dc.contributor.authorLarcher, Théo
dc.contributor.authorChamidullin, Rail
dc.contributor.authorŠulc, Milan
dc.contributor.authorHrúz, Marek
dc.contributor.authorServajean, Maximillien
dc.contributor.authorGlotin, Hervé
dc.contributor.authorPlanqué, Robert
dc.contributor.authorVellinga, Willem-Pier
dc.contributor.authorKlinck, Holger
dc.contributor.authorDenton, Tom
dc.contributor.authorEggel, Ivan
dc.contributor.authorBonnet, Pierre
dc.contributor.authorMuller, Henning
dc.date.accessioned2025-06-20T08:43:59Z
dc.date.available2025-06-20T08:43:59Z
dc.date.issued2023
dc.date.updated2025-06-20T08:43:59Z
dc.description.abstractBiodiversity monitoring through AI approaches is essential, as it enables the efficient analysis of vast amounts of data, providing comprehensive insights into species distribution and ecosystem health and aiding in informed conservation decisions. Species identification based on images and sounds, in particular, is invaluable for facilitating biodiversity monitoring efforts and enabling prompt conservation actions to protect threatened and endangered species. The LifeCLEF virtual lab has been promoting and evaluating advances in this domain since 2011. The 2023 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i)\,BirdCLEF: bird species recognition in long-term audio recordings (soundscapes), (ii)\,\mbox{SnakeCLEF:} snake identification inmedically important scenarios, (iii)\,PlantCLEF: very large-scale plant identification, (iv)\,\mbox{FungiCLEF:} fungi recognition beyond0-1 cost, and (v)\,GeoLifeCLEF: remote sensing-based prediction of species. This paper overviews the motivation, methodology, and main outcomes of that five challenges.en
dc.format24
dc.identifier.doi10.1007/978-3-031-42448-9_27
dc.identifier.isbn978-3-031-42447-2
dc.identifier.issn0302-9743
dc.identifier.obd43940694
dc.identifier.orcidPicek, Lukáš 0000-0002-6041-9722
dc.identifier.orcidChamidullin, Rail 0000-0003-1728-8939
dc.identifier.orcidHrúz, Marek 0000-0002-7851-9879
dc.identifier.urihttp://hdl.handle.net/11025/60810
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofseries14th International Conference of the Cross-Language Evaluation Forum for European Languages, CLEF 2023
dc.subjectBiodiversity conservationen
dc.subjectBiodiversity monitoringen
dc.subjectGeneral publicsen
dc.subjectGeographicsen
dc.subjectLarge-scalesen
dc.subjectLiving organismsen
dc.subjectMachine-learningen
dc.subjectMonitoring systemen
dc.subjectSpecies distributionsen
dc.subjectSpecies identificationen
dc.titleOverview of LifeCLEF 2023: evaluation of AI models for the identification and prediction of birds, plants, snakes and fungien
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size1641781*
local.has.filesyes*
local.identifier.eid2-s2.0-85165316446

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
978-3-031-42448-9_27.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: