Stochastic Integration Based Estimator: Robust Design and Stone Soup Implementation
| dc.contributor.author | Duník, Jindřich | |
| dc.contributor.author | Matoušek, Jakub | |
| dc.contributor.author | Straka, Ondřej | |
| dc.contributor.author | Blasch, Erik | |
| dc.contributor.author | Hiles, John | |
| dc.contributor.author | Niu, Ruixin | |
| dc.date.accessioned | 2025-06-20T08:36:13Z | |
| dc.date.available | 2025-06-20T08:36:13Z | |
| dc.date.issued | 2024 | |
| dc.date.updated | 2025-06-20T08:36:13Z | |
| dc.description.abstract | This paper deals with state estimation of nonlinear stochastic dynamic models. In particular, the stochastic integration rule, which provides asymptotically unbiased estimates of the moments of nonlinearly transformed Gaussian random variables, is reviewed together with the recently introduced stochastic integration filter (SIF). Using SIF, the respective multi-step prediction and smoothing algorithms are developed in full and efficient square-root form. The stochastic-integration-rule-based algorithms are implemented in Python (within the Stone Soup framework) and in MATLAB® and are numerically evaluated and compared with the well-known unscented and extended Kalman filters using the Stone Soup defined tracking scenario. | en |
| dc.format | 8 | |
| dc.identifier.document-number | 001334560000204 | |
| dc.identifier.doi | 10.23919/FUSION59988.2024.10706476 | |
| dc.identifier.isbn | 978-1-73774-976-9 | |
| dc.identifier.obd | 43944057 | |
| dc.identifier.orcid | Duník, Jindřich 0000-0003-1460-8845 | |
| dc.identifier.orcid | Matoušek, Jakub 0000-0001-5014-1088 | |
| dc.identifier.orcid | Straka, Ondřej 0000-0003-3066-5882 | |
| dc.identifier.orcid | Blasch, Erik 0000-0001-6894-6108 | |
| dc.identifier.orcid | Niu, Ruixin 0000-0003-2511-9174 | |
| dc.identifier.uri | http://hdl.handle.net/11025/60360 | |
| dc.language.iso | en | |
| dc.project.ID | SGS-2022-022 | |
| dc.project.ID | EH22_008/0004590 | |
| dc.publisher | IEEE | |
| dc.relation.ispartofseries | 27th International Conference on Information Fusion, FUSION 2024 | |
| dc.subject | stochastic integration rule | en |
| dc.subject | nonlinear systems | en |
| dc.subject | state estimation | en |
| dc.subject | filtering | en |
| dc.subject | prediction | en |
| dc.subject | smoothing | en |
| dc.subject | stone soup | en |
| dc.title | Stochastic Integration Based Estimator: Robust Design and Stone Soup Implementation | en |
| dc.type | Stať ve sborníku (D) | |
| dc.type | STAŤ VE SBORNÍKU | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 578620 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85207690650 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- article_FUSION24_DuMaStBlHiN.pdf
- Size:
- 565.06 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: