Stochastic Integration Based Estimator: Robust Design and Stone Soup Implementation

dc.contributor.authorDuník, Jindřich
dc.contributor.authorMatoušek, Jakub
dc.contributor.authorStraka, Ondřej
dc.contributor.authorBlasch, Erik
dc.contributor.authorHiles, John
dc.contributor.authorNiu, Ruixin
dc.date.accessioned2025-06-20T08:36:13Z
dc.date.available2025-06-20T08:36:13Z
dc.date.issued2024
dc.date.updated2025-06-20T08:36:13Z
dc.description.abstractThis paper deals with state estimation of nonlinear stochastic dynamic models. In particular, the stochastic integration rule, which provides asymptotically unbiased estimates of the moments of nonlinearly transformed Gaussian random variables, is reviewed together with the recently introduced stochastic integration filter (SIF). Using SIF, the respective multi-step prediction and smoothing algorithms are developed in full and efficient square-root form. The stochastic-integration-rule-based algorithms are implemented in Python (within the Stone Soup framework) and in MATLAB® and are numerically evaluated and compared with the well-known unscented and extended Kalman filters using the Stone Soup defined tracking scenario.en
dc.format8
dc.identifier.document-number001334560000204
dc.identifier.doi10.23919/FUSION59988.2024.10706476
dc.identifier.isbn978-1-73774-976-9
dc.identifier.obd43944057
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.orcidMatoušek, Jakub 0000-0001-5014-1088
dc.identifier.orcidStraka, Ondřej 0000-0003-3066-5882
dc.identifier.orcidBlasch, Erik 0000-0001-6894-6108
dc.identifier.orcidNiu, Ruixin 0000-0003-2511-9174
dc.identifier.urihttp://hdl.handle.net/11025/60360
dc.language.isoen
dc.project.IDSGS-2022-022
dc.project.IDEH22_008/0004590
dc.publisherIEEE
dc.relation.ispartofseries27th International Conference on Information Fusion, FUSION 2024
dc.subjectstochastic integration ruleen
dc.subjectnonlinear systemsen
dc.subjectstate estimationen
dc.subjectfilteringen
dc.subjectpredictionen
dc.subjectsmoothingen
dc.subjectstone soupen
dc.titleStochastic Integration Based Estimator: Robust Design and Stone Soup Implementationen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size578620*
local.has.filesyes*
local.identifier.eid2-s2.0-85207690650

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_FUSION24_DuMaStBlHiN.pdf
Size:
565.06 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: