Comparison of linear and nonlinear models in explanation of dishonest behavior

dc.contributor.authorMartinčíková Sojková, Olga
dc.contributor.authorMartinčík, David
dc.date.accessioned2025-06-20T08:36:51Z
dc.date.available2025-06-20T08:36:51Z
dc.date.issued2024
dc.date.updated2025-06-20T08:36:51Z
dc.description.abstractDishonest behavior impacts various sectors, including environmental protection, production quality, finance, and taxation. This study compares linear and nonlinear models for explaining behavioral data obtained through a laboratory experiment with economics students at the University of West Bohemia.Participants chose between honest production at a higher cost or dishonest production to save costs. The experiment varied inspection probabilities and introduced punishment for dishonesty or rewards for honesty. Personality traits (MBTI) and risk aversion (Holt-Laury measurement) were also assessed. Both linear and nonlinear (GAM, neural networks) models produced similar results. Increased inspection significantly reduced dishonesty (p < 0.01), while punishment and reward had no significant effect (p > 0.10). Thinking-oriented individuals were more prone to dishonesty (p ≈ 0.05), and higher risk aversion correlated with lower dishonest behavior (p ≈ 0.10). All models achieved a similar power to predict dishonest behavior.en
dc.format12
dc.identifier.isbn978-80-261-1270-9
dc.identifier.obd43945248
dc.identifier.orcidMartinčíková Sojková, Olga 0000-0001-5820-8881
dc.identifier.orcidMartinčík, David 0009-0002-5042-6336
dc.identifier.urihttp://hdl.handle.net/11025/60425
dc.language.isoen
dc.project.IDSGS-2024-030
dc.publisherZápadočeská univerzita v Plzni
dc.relation.ispartofseriesMezinárodní vědecká konference Trendy v podnikání 2024
dc.subjectdishonest behavioren
dc.subjectGeneralized Additive Modelen
dc.subjectGeneralized Linear Modelen
dc.subjectlaboratory experimenten
dc.subjectneural networken
dc.titleComparison of linear and nonlinear models in explanation of dishonest behavioren
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size1558680*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
ConferenceProceedings_BusinessTrends_2024.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: