Sample Size for Maximum-Likelihood Estimates of Gaussian Model Depending on Dimensionality of Pattern Space
dc.contributor.author | Psutka, Josef | |
dc.contributor.author | Psutka, Josef | |
dc.date.accessioned | 2019-11-11T11:00:22Z | |
dc.date.available | 2019-11-11T11:00:22Z | |
dc.date.issued | 2019 | |
dc.description.abstract-translated | Growing awareness towards the sustainability has compelled supply chain domain experts to explore its relevance in this context. As a result, a number of studies in recent years have focused on investigating sustainable supply chain practices across the globe. Short food supply chains (SFSCs) have emerged as a promising sustainable alternative to the industrialized agro-food supply systems. However, academic literature hasn’t fully explored the linkage between SFSCs and sustainability. This study therefore aims to explore how SFSCs conforms to the dimensions of sustainability using the sustainability framework (social, economic, and environmental). The findings are based on a systematic literature review of 44 articles published between 2000 and 2018 selected from six electronic databases was used for the analysis. All items were properly analyzed by the researchers, seeking to identify the relationship or proximity of the information found in the papers with the SFSC concept. Our studies highlight the societal, environmental and cultural benefits of SFSC in addition to the associated economic and safety benefits. Our study thus, adds to the scant literature on SFSCs and shows a clear linkage between SFSCs and five-dimensional sustainability framework. We also propose a set of research questions that sets direction for future research. | en |
dc.format | 11 s. | cs |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | KUMAR, V., WANG, M., KUMARI, A., AKKARANGGOON, S., GARZA-REYES, J.A., NEUTZLING, D., TUPA, J. Exploring short food supply chains from triple bottom line lens: A comprehensive systematic review. In: Proceedings of the International Conference on Industrial Engineering and Operations Management (IEOM 2019). Michigan: IEOM Society International, 2019. s. 728-738. ISBN 978-1-5323-5948-4 , ISSN 2169-8767. | en |
dc.identifier.document-number | 466250400003 | |
dc.identifier.doi | 10.1016/j.patcog.2019.01.046 | |
dc.identifier.isbn | 978-1-5323-5948-4 | |
dc.identifier.issn | 0031-3203 | |
dc.identifier.obd | 43926841 | |
dc.identifier.uri | 2-s2.0-85067239868 | |
dc.identifier.uri | http://hdl.handle.net/11025/35857 | |
dc.language.iso | en | en |
dc.publisher | IEOM Society International | en |
dc.relation.ispartofseries | Proceedings of the International Conference on Industrial Engineering and Operations Management (IEOM 2019) | en |
dc.rights | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. | cs |
dc.rights | © IEOM Society International | en |
dc.rights.access | restrictedAccess | en |
dc.subject | Maximálně věrohodný odhad | cs |
dc.subject | věrohodnostní funkce | cs |
dc.subject | Gaussovský model | cs |
dc.subject | GMM | cs |
dc.subject | velikost dat | cs |
dc.subject | dimenzionalita | cs |
dc.subject | obrazový prostror | cs |
dc.subject | heterosceadistická data | cs |
dc.subject.translated | Maximum-likelihood estimate | en |
dc.subject.translated | Likelihood function | en |
dc.subject.translated | Gaussian model | en |
dc.subject.translated | Gaussian mixture model | en |
dc.subject.translated | Sample size | en |
dc.subject.translated | Dimensionality | en |
dc.subject.translated | Pattern space | en |
dc.subject.translated | Heteroscedastic data | en |
dc.title | Sample Size for Maximum-Likelihood Estimates of Gaussian Model Depending on Dimensionality of Pattern Space | en |
dc.title.alternative | Počet dat pro maximálně věrohodný odhad Gaussovského modelu v závislosti na dimenzi obrazového prostoru. | cs |
dc.type | konferenční příspěvek | cs |
dc.type | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |