Efficient Point Mass Predictor for Continuous and Discrete Models with Linear Dynamics

dc.contributor.authorMatoušek, Jakub
dc.contributor.authorDuník, Jindřich
dc.contributor.authorBrandner, Marek
dc.contributor.authorPark, Chan Gook
dc.contributor.authorChoe, Yeongkwon
dc.date.accessioned2025-06-20T08:42:36Z
dc.date.available2025-06-20T08:42:36Z
dc.date.issued2023
dc.date.updated2025-06-20T08:42:36Z
dc.description.abstractThis paper deals with state estimation of stochastic models with linear state dynamics, continuous or discrete in time. The emphasis is laid on a numerical solution to the state prediction by the time-update step of the grid-point-based point-mass filter (PMF), which is the most computationally demanding part of the PMF algorithm. A novel way of manipulating the grid, leading to the time-update in form of a convolution, is proposed. This reduces the PMF time complexity from quadratic to log-linear with respect to the number of grid points. Furthermore, the number of unique transition probability values is greatly reduced causing a significant reduction of the data storage needed. The proposed PMF prediction step is verified in a numerical study.en
dc.format6
dc.identifier.doi10.1016/j.ifacol.2023.10.621
dc.identifier.isbn978-1-71387-234-4
dc.identifier.issn2405-8963
dc.identifier.obd43940679
dc.identifier.orcidMatoušek, Jakub 0000-0001-5014-1088
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.orcidBrandner, Marek 0000-0002-4295-1854
dc.identifier.urihttp://hdl.handle.net/11025/60773
dc.language.isoen
dc.project.IDSGS-2022-022
dc.project.IDGA22-11101S
dc.publisherElsevier B.V.
dc.relation.ispartofseries22nd IFAC World Congress 2023
dc.subjectstate estimationen
dc.subjectpredictionen
dc.subjecttransition probability matrixen
dc.subjectChapman-Kolmogorov equationen
dc.subjectFokker-Planck equationen
dc.subjectpoint-mass filteren
dc.subjectconvolutionen
dc.titleEfficient Point Mass Predictor for Continuous and Discrete Models with Linear Dynamicsen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size741422*
local.has.filesyes*
local.identifier.eid2-s2.0-85184961169

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_IFAC2023_MaDuBrChYe.pdf
Size:
724.04 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: