Noise Identification for Data-augmented Physics-based State-Space Models
| dc.contributor.author | Duník, Jindřich | |
| dc.contributor.author | Straka, Ondřej | |
| dc.contributor.author | Kost, Oliver | |
| dc.contributor.author | Tang, Shuo | |
| dc.contributor.author | Imbiriba, Tales | |
| dc.contributor.author | Closas, Pau | |
| dc.date.accessioned | 2025-06-20T08:35:34Z | |
| dc.date.available | 2025-06-20T08:35:34Z | |
| dc.date.issued | 2024 | |
| dc.date.updated | 2025-06-20T08:35:34Z | |
| dc.description.abstract | This paper deals with the state-space modelling of nonlinear stochastic dynamic systems. The emphasis is laid on the emerging area of data-augmented physics-based modelling of the state dynamics, which combines the benefits of the physics-driven and data-based identified models. As the augmented state-space models depend on the measured data, modelling the state noise properties becomes challenging. This paper proposes and validates a concept for the state noise identification of nonlinear data-augmented state equation using the maximum likelihood and correlation-based methods. The numerical simulation of a tracking scenario shows significant improvement of the state estimation accuracy and consistency when using the identified noise model. | en |
| dc.format | 6 | |
| dc.identifier.doi | 10.1109/SiPS62058.2024.00026 | |
| dc.identifier.isbn | 979-8-3503-7375-2 | |
| dc.identifier.issn | 1520-6130 | |
| dc.identifier.obd | 43944102 | |
| dc.identifier.orcid | Duník, Jindřich 0000-0003-1460-8845 | |
| dc.identifier.orcid | Straka, Ondřej 0000-0003-3066-5882 | |
| dc.identifier.orcid | Kost, Oliver 0000-0002-6355-6677 | |
| dc.identifier.orcid | Imbiriba, Tales 0000-0002-2626-2039 | |
| dc.identifier.uri | http://hdl.handle.net/11025/60292 | |
| dc.language.iso | en | |
| dc.project.ID | SGS-2022-022 | |
| dc.project.ID | EH22_008/0004590 | |
| dc.publisher | IEEE | |
| dc.relation.ispartofseries | 37th IEEE International Workshop on Signal Processing Systems, SiPS 2024 | |
| dc.subject | state estimation | en |
| dc.subject | neural networks | en |
| dc.subject | correlation method | en |
| dc.subject | maximum likelihood method | en |
| dc.title | Noise Identification for Data-augmented Physics-based State-Space Models | en |
| dc.type | Stať ve sborníku (D) | |
| dc.type | STAŤ VE SBORNÍKU | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 196738 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85208390096 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- article_SiPS24_DuStKoTaImCl.pdf
- Size:
- 192.13 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: