Noise Identification for Data-augmented Physics-based State-Space Models

dc.contributor.authorDuník, Jindřich
dc.contributor.authorStraka, Ondřej
dc.contributor.authorKost, Oliver
dc.contributor.authorTang, Shuo
dc.contributor.authorImbiriba, Tales
dc.contributor.authorClosas, Pau
dc.date.accessioned2025-06-20T08:35:34Z
dc.date.available2025-06-20T08:35:34Z
dc.date.issued2024
dc.date.updated2025-06-20T08:35:34Z
dc.description.abstractThis paper deals with the state-space modelling of nonlinear stochastic dynamic systems. The emphasis is laid on the emerging area of data-augmented physics-based modelling of the state dynamics, which combines the benefits of the physics-driven and data-based identified models. As the augmented state-space models depend on the measured data, modelling the state noise properties becomes challenging. This paper proposes and validates a concept for the state noise identification of nonlinear data-augmented state equation using the maximum likelihood and correlation-based methods. The numerical simulation of a tracking scenario shows significant improvement of the state estimation accuracy and consistency when using the identified noise model.en
dc.format6
dc.identifier.doi10.1109/SiPS62058.2024.00026
dc.identifier.isbn979-8-3503-7375-2
dc.identifier.issn1520-6130
dc.identifier.obd43944102
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.orcidStraka, Ondřej 0000-0003-3066-5882
dc.identifier.orcidKost, Oliver 0000-0002-6355-6677
dc.identifier.orcidImbiriba, Tales 0000-0002-2626-2039
dc.identifier.urihttp://hdl.handle.net/11025/60292
dc.language.isoen
dc.project.IDSGS-2022-022
dc.project.IDEH22_008/0004590
dc.publisherIEEE
dc.relation.ispartofseries37th IEEE International Workshop on Signal Processing Systems, SiPS 2024
dc.subjectstate estimationen
dc.subjectneural networksen
dc.subjectcorrelation methoden
dc.subjectmaximum likelihood methoden
dc.titleNoise Identification for Data-augmented Physics-based State-Space Modelsen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size196738*
local.has.filesyes*
local.identifier.eid2-s2.0-85208390096

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_SiPS24_DuStKoTaImCl.pdf
Size:
192.13 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: