Online Learning and Control for Data-Augmented Quadrotor Model

dc.contributor.authorŠmíd, Matěj
dc.contributor.authorDuník, Jindřich
dc.date.accessioned2025-06-20T08:35:34Z
dc.date.available2025-06-20T08:35:34Z
dc.date.issued2024
dc.date.updated2025-06-20T08:35:34Z
dc.description.abstractThe ability to adapt to changing conditions is a key feature of a successful autonomous system. In this work, we use the Recursive Gaussian Processes (RGP) for identification of the quadrotor air drag model online, without the need to precollect training data. The identified drag model then augments a physics-based model of the quadrotor dynamics, which allows more accurate quadrotor state prediction with increased ability to adapt to changing conditions. This data-augmented physics-based model is utilized for precise quadrotor trajectory tracking using the suitably modified Model Predictive Control (MPC) algorithm. The proposed modelling and control approach is evaluated using the Gazebo simulator and it is shown that the proposed approach tracks a desired trajectory with a higher accuracy compared to the MPC with the non-augmented (purely physics-based) model.en
dc.format6
dc.identifier.document-number001316057100038
dc.identifier.doi10.1016/j.ifacol.2024.08.532
dc.identifier.isbnneuvedeno
dc.identifier.issn2405-8971
dc.identifier.obd43944103
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.urihttp://hdl.handle.net/11025/60293
dc.language.isoen
dc.project.IDSGS-2022-022
dc.project.IDEH22_008/0004590
dc.publisherElsevier
dc.relation.ispartofseries20th IFAC Symposium on System Identification, SYSID 2024
dc.subjectdata-augmented physics-based modelen
dc.subjectadaptive controlen
dc.subjectGaussian processen
dc.subjectpredictive controlen
dc.subjectquadrotoren
dc.subjectGazeboen
dc.titleOnline Learning and Control for Data-Augmented Quadrotor Modelen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size553072*
local.has.filesyes*
local.identifier.eid2-s2.0-85205821981

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_SYSID24_SmDu.pdf
Size:
540.11 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: