Online Learning and Control for Data-Augmented Quadrotor Model
| dc.contributor.author | Šmíd, Matěj | |
| dc.contributor.author | Duník, Jindřich | |
| dc.date.accessioned | 2025-06-20T08:35:34Z | |
| dc.date.available | 2025-06-20T08:35:34Z | |
| dc.date.issued | 2024 | |
| dc.date.updated | 2025-06-20T08:35:34Z | |
| dc.description.abstract | The ability to adapt to changing conditions is a key feature of a successful autonomous system. In this work, we use the Recursive Gaussian Processes (RGP) for identification of the quadrotor air drag model online, without the need to precollect training data. The identified drag model then augments a physics-based model of the quadrotor dynamics, which allows more accurate quadrotor state prediction with increased ability to adapt to changing conditions. This data-augmented physics-based model is utilized for precise quadrotor trajectory tracking using the suitably modified Model Predictive Control (MPC) algorithm. The proposed modelling and control approach is evaluated using the Gazebo simulator and it is shown that the proposed approach tracks a desired trajectory with a higher accuracy compared to the MPC with the non-augmented (purely physics-based) model. | en |
| dc.format | 6 | |
| dc.identifier.document-number | 001316057100038 | |
| dc.identifier.doi | 10.1016/j.ifacol.2024.08.532 | |
| dc.identifier.isbn | neuvedeno | |
| dc.identifier.issn | 2405-8971 | |
| dc.identifier.obd | 43944103 | |
| dc.identifier.orcid | Duník, Jindřich 0000-0003-1460-8845 | |
| dc.identifier.uri | http://hdl.handle.net/11025/60293 | |
| dc.language.iso | en | |
| dc.project.ID | SGS-2022-022 | |
| dc.project.ID | EH22_008/0004590 | |
| dc.publisher | Elsevier | |
| dc.relation.ispartofseries | 20th IFAC Symposium on System Identification, SYSID 2024 | |
| dc.subject | data-augmented physics-based model | en |
| dc.subject | adaptive control | en |
| dc.subject | Gaussian process | en |
| dc.subject | predictive control | en |
| dc.subject | quadrotor | en |
| dc.subject | Gazebo | en |
| dc.title | Online Learning and Control for Data-Augmented Quadrotor Model | en |
| dc.type | Stať ve sborníku (D) | |
| dc.type | STAŤ VE SBORNÍKU | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 553072 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85205821981 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- article_SYSID24_SmDu.pdf
- Size:
- 540.11 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: