Time periodic solution of linear vibrating systems with time dependent stiffness using periodic collocation
| dc.contributor.author | Dupal, Jan | |
| dc.date.accessioned | 2025-08-07T07:32:19Z | |
| dc.date.available | 2025-08-07T07:32:19Z | |
| dc.date.issued | 2023 | |
| dc.date.updated | 2025-08-07T07:32:19Z | |
| dc.description.abstract | This paper deals with approach to solution of periodic response of systems having periodic time dependent stiffness. The methodology is prepared for systems with degrees of freedom (DOF) but we restrict to 1 DOF systems in this presentation. The presented approach uses time periodic collocation for discretization of the kernel of integral equation describing motion of the system | en |
| dc.format | 2 | |
| dc.identifier.isbn | 978-80-261-1177-1 | |
| dc.identifier.obd | 43941589 | |
| dc.identifier.orcid | Dupal, Jan 0009-0000-5092-5050 | |
| dc.identifier.uri | http://hdl.handle.net/11025/62605 | |
| dc.language.iso | en | |
| dc.project.ID | FW06010052 | |
| dc.publisher | University of West Bohemia | |
| dc.relation.ispartofseries | COMPUTATIONAL MECHANICS 2023 | |
| dc.subject | Vibration | en |
| dc.subject | time dependent linear system | en |
| dc.subject | periodic solution | en |
| dc.subject | collocation | en |
| dc.title | Time periodic solution of linear vibrating systems with time dependent stiffness using periodic collocation | en |
| dc.type | Stať ve sborníku (O) | |
| dc.type | STAŤ VE SBORNÍKU | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 275241 | * |
| local.has.files | yes | * |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- CM2023_Conference_Proceedings-46-47.pdf
- Size:
- 268.79 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: