Flow-Field Prediction in Periodic Domains Using a Convolution Neural Network with Hypernetwork Parametrization

dc.contributor.authorBublík, Ondřej
dc.contributor.authorHeidler, Václav
dc.contributor.authorPecka, Aleš
dc.contributor.authorVimmr, Jan
dc.date.accessioned2023-06-26T10:00:09Z
dc.date.available2023-06-26T10:00:09Z
dc.date.issued2023
dc.description.abstract-translatedThis paper deals with flow field prediction in a blade cascade using the convolution neural network. The convolutional neural network (CNN) predicts density, pressure and velocity fields based on the given geometry. The blade cascade is modeled as a single interblade channel with periodic boundary conditions. In this paper, an algorithm that enforces periodic boundary conditions onto the CNN is presented. The main target of this study is to parametrize the CNN model depending on the Reynolds number. A new parametrization approach based on a so-called hypernetwork is employed for this purpose. The idea of this approach is that when the Reynolds number is modified, the hypernetwork modifies the weights of the CNN in such a way that it produces flow fields corresponding to that particular Reynolds number. The concept of the hypernetwork-based parametrization is tested on the problem of a compressible fluid flow through a blade cascade with variable blade profiles and Reynolds numbers.en
dc.format20 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationBUBLÍK, O. HEIDLER, V. PECKA, A. VIMMR, J. Flow-Field Prediction in Periodic Domains Using a Convolution Neural Network with Hypernetwork Parametrization. International Journal of Applied Mechanics, 2023, roč. 15, č. 2, s. 1-20. ISSN: 1758-8251cs
dc.identifier.document-number923377600001
dc.identifier.doi10.1142/S1758825123500187
dc.identifier.issn1758-8251
dc.identifier.obd43939210
dc.identifier.uri2-s2.0-85147495139
dc.identifier.urihttp://hdl.handle.net/11025/52987
dc.language.isoenen
dc.project.IDGA21-31457S/Použití neuronových sítí pro rychlou predikci proudového pole v úlohách interakce tekutiny s tělesemcs
dc.publisherWorld Scientificen
dc.relation.ispartofseriesInternational Journal of Applied Mechanicsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelůmcs
dc.rights© World Scientific Publishing Europe Ltd.en
dc.rights.accessrestrictedAccessen
dc.subject.translatedblade cascadeen
dc.subject.translatedcompressible fluid flowen
dc.subject.translatedconvolutional neural networken
dc.subject.translatedhypernetworken
dc.subject.translatedperiodic boundary conditionen
dc.titleFlow-Field Prediction in Periodic Domains Using a Convolution Neural Network with Hypernetwork Parametrizationen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
NN1.pdf
Size:
4.45 MB
Format:
Adobe Portable Document Format