Data-Augmented Numerical Integration in State Prediction: Rule Selection

dc.contributor.authorDuník, Jindřich
dc.contributor.authorKrál, Ladislav
dc.contributor.authorMatoušek, Jakub
dc.contributor.authorStraka, Ondřej
dc.contributor.authorBrandner, Marek
dc.date.accessioned2025-06-20T08:36:07Z
dc.date.available2025-06-20T08:36:07Z
dc.date.issued2024
dc.date.updated2025-06-20T08:36:07Z
dc.description.abstractThis paper deals with the state prediction of nonlinear stochastic dynamic systems. The emphasis is laid on a solution to the integral Chapman-Kolmogorov equation by a deterministic-integration-rule-based point-mass method. A novel concept of reliable data-augmented, i.e., mathematics- and data-informed, integration rule is developed to enhance the point-mass state predictor, where the trained neural network (representing data contribution) is used for the selection of the best integration rule from a set of available rules (representing mathematics contribution). The proposed approach combining the best properties of the standard mathematics-informed and novel data-informed rules is thoroughly discussed.en
dc.format6
dc.identifier.document-number001316057100024
dc.identifier.doi10.1016/j.ifacol.2024.08.518
dc.identifier.isbnneuvedeno
dc.identifier.issn2405-8971
dc.identifier.obd43944049
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.orcidKrál, Ladislav 0000-0002-0762-8250
dc.identifier.orcidMatoušek, Jakub 0000-0001-5014-1088
dc.identifier.orcidStraka, Ondřej 0000-0003-3066-5882
dc.identifier.orcidBrandner, Marek 0000-0002-4295-1854
dc.identifier.urihttp://hdl.handle.net/11025/60349
dc.language.isoen
dc.project.IDSGS-2022-022
dc.project.IDEH22_008/0004590
dc.publisherElsevier
dc.relation.ispartofseries20th IFAC Symposium on System Identification, SYSID 2024
dc.subjectstate estimationen
dc.subjectneural networken
dc.subjectnumerical integrationen
dc.subjectnonlinear predictorsen
dc.subjectBayesian methodsen
dc.subjectstochastic systemsen
dc.titleData-Augmented Numerical Integration in State Prediction: Rule Selectionen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size578073*
local.has.filesyes*
local.identifier.eid2-s2.0-85205785447

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_SYSID24_DuKrMaStBr.pdf
Size:
564.52 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: