Data-Augmented Numerical Integration in State Prediction: Rule Selection
| dc.contributor.author | Duník, Jindřich | |
| dc.contributor.author | Král, Ladislav | |
| dc.contributor.author | Matoušek, Jakub | |
| dc.contributor.author | Straka, Ondřej | |
| dc.contributor.author | Brandner, Marek | |
| dc.date.accessioned | 2025-06-20T08:36:07Z | |
| dc.date.available | 2025-06-20T08:36:07Z | |
| dc.date.issued | 2024 | |
| dc.date.updated | 2025-06-20T08:36:07Z | |
| dc.description.abstract | This paper deals with the state prediction of nonlinear stochastic dynamic systems. The emphasis is laid on a solution to the integral Chapman-Kolmogorov equation by a deterministic-integration-rule-based point-mass method. A novel concept of reliable data-augmented, i.e., mathematics- and data-informed, integration rule is developed to enhance the point-mass state predictor, where the trained neural network (representing data contribution) is used for the selection of the best integration rule from a set of available rules (representing mathematics contribution). The proposed approach combining the best properties of the standard mathematics-informed and novel data-informed rules is thoroughly discussed. | en |
| dc.format | 6 | |
| dc.identifier.document-number | 001316057100024 | |
| dc.identifier.doi | 10.1016/j.ifacol.2024.08.518 | |
| dc.identifier.isbn | neuvedeno | |
| dc.identifier.issn | 2405-8971 | |
| dc.identifier.obd | 43944049 | |
| dc.identifier.orcid | Duník, Jindřich 0000-0003-1460-8845 | |
| dc.identifier.orcid | Král, Ladislav 0000-0002-0762-8250 | |
| dc.identifier.orcid | Matoušek, Jakub 0000-0001-5014-1088 | |
| dc.identifier.orcid | Straka, Ondřej 0000-0003-3066-5882 | |
| dc.identifier.orcid | Brandner, Marek 0000-0002-4295-1854 | |
| dc.identifier.uri | http://hdl.handle.net/11025/60349 | |
| dc.language.iso | en | |
| dc.project.ID | SGS-2022-022 | |
| dc.project.ID | EH22_008/0004590 | |
| dc.publisher | Elsevier | |
| dc.relation.ispartofseries | 20th IFAC Symposium on System Identification, SYSID 2024 | |
| dc.subject | state estimation | en |
| dc.subject | neural network | en |
| dc.subject | numerical integration | en |
| dc.subject | nonlinear predictors | en |
| dc.subject | Bayesian methods | en |
| dc.subject | stochastic systems | en |
| dc.title | Data-Augmented Numerical Integration in State Prediction: Rule Selection | en |
| dc.type | Stať ve sborníku (D) | |
| dc.type | STAŤ VE SBORNÍKU | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 578073 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85205785447 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- article_SYSID24_DuKrMaStBr.pdf
- Size:
- 564.52 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: