Guest Editorial for the TAES Special Section on Machine Learning Methods for Aerial and Space Positioning and Navigation
| dc.contributor.author | Yu, Kegen | |
| dc.contributor.author | Duník, Jindřich | |
| dc.contributor.author | Braasch, Michael S. | |
| dc.contributor.author | Closas, Pau | |
| dc.contributor.author | Dovis, Fabio | |
| dc.date.accessioned | 2025-06-20T08:39:42Z | |
| dc.date.available | 2025-06-20T08:39:42Z | |
| dc.date.issued | 2024 | |
| dc.date.updated | 2025-06-20T08:39:42Z | |
| dc.description.abstract | Positioning and navigation plays a significant role in a wide range of fields, such as aerospace, defense, and transportation, especially due to the continuous performance enhancement of the four Global Navigation Satellite Systems (GNSS) [1], [2] and the advent of complementary local positioning systems [3], [4]. Nowadays, requirements on positioning and navigation are becoming stricter in areas such as reliability, accuracy, continuity, complexity, integrability, and safety to enable better location-based services. In many complex and harsh environments, it is still a demanding task (such as for aerial and space vehicles) to generate real-time valid location information and perform the desired navigation, which enables to fulfill the assigned duties [5]. | en |
| dc.format | 6 | |
| dc.identifier.doi | 10.1109/TAES.2024.3385216 | |
| dc.identifier.issn | 0018-9251 | |
| dc.identifier.obd | 43946078 | |
| dc.identifier.orcid | Yu, Kegen 0000-0001-7710-3073 | |
| dc.identifier.orcid | Duník, Jindřich 0000-0003-1460-8845 | |
| dc.identifier.orcid | Braasch, Michael S. 0000-0003-3773-0034 | |
| dc.identifier.orcid | Closas, Pau 0000-0002-5960-6600 | |
| dc.identifier.orcid | Dovis, Fabio 0000-0001-6078-9099 | |
| dc.identifier.uri | http://hdl.handle.net/11025/60645 | |
| dc.language.iso | en | |
| dc.relation.ispartofseries | IEEE Transactions on Aerospace and Electronic Systems | |
| dc.rights.access | C | |
| dc.subject | air navigation | en |
| dc.subject | antennas | en |
| dc.subject | global positioning system | en |
| dc.subject | indium compounds | en |
| dc.subject | telecommunication services | en |
| dc.title | Guest Editorial for the TAES Special Section on Machine Learning Methods for Aerial and Space Positioning and Navigation | en |
| dc.type | Článek v databázi Scopus (Jsc) | |
| dc.type | ČLÁNEK | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 84429 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85196665812 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- article_TAES24_YuDuBrClDo.pdf
- Size:
- 82.45 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: