Guest Editorial for the TAES Special Section on Machine Learning Methods for Aerial and Space Positioning and Navigation

dc.contributor.authorYu, Kegen
dc.contributor.authorDuník, Jindřich
dc.contributor.authorBraasch, Michael S.
dc.contributor.authorClosas, Pau
dc.contributor.authorDovis, Fabio
dc.date.accessioned2025-06-20T08:39:42Z
dc.date.available2025-06-20T08:39:42Z
dc.date.issued2024
dc.date.updated2025-06-20T08:39:42Z
dc.description.abstractPositioning and navigation plays a significant role in a wide range of fields, such as aerospace, defense, and transportation, especially due to the continuous performance enhancement of the four Global Navigation Satellite Systems (GNSS) [1], [2] and the advent of complementary local positioning systems [3], [4]. Nowadays, requirements on positioning and navigation are becoming stricter in areas such as reliability, accuracy, continuity, complexity, integrability, and safety to enable better location-based services. In many complex and harsh environments, it is still a demanding task (such as for aerial and space vehicles) to generate real-time valid location information and perform the desired navigation, which enables to fulfill the assigned duties [5].en
dc.format6
dc.identifier.doi10.1109/TAES.2024.3385216
dc.identifier.issn0018-9251
dc.identifier.obd43946078
dc.identifier.orcidYu, Kegen 0000-0001-7710-3073
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.orcidBraasch, Michael S. 0000-0003-3773-0034
dc.identifier.orcidClosas, Pau 0000-0002-5960-6600
dc.identifier.orcidDovis, Fabio 0000-0001-6078-9099
dc.identifier.urihttp://hdl.handle.net/11025/60645
dc.language.isoen
dc.relation.ispartofseriesIEEE Transactions on Aerospace and Electronic Systems
dc.rights.accessC
dc.subjectair navigationen
dc.subjectantennasen
dc.subjectglobal positioning systemen
dc.subjectindium compoundsen
dc.subjecttelecommunication servicesen
dc.titleGuest Editorial for the TAES Special Section on Machine Learning Methods for Aerial and Space Positioning and Navigationen
dc.typeČlánek v databázi Scopus (Jsc)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size84429*
local.has.filesyes*
local.identifier.eid2-s2.0-85196665812

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_TAES24_YuDuBrClDo.pdf
Size:
82.45 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections