On continuous space word representations as input of LSTM language model

dc.contributor.authorSoutner, Daniel
dc.contributor.authorMüller, Luděk
dc.date.accessioned2017-05-30T07:16:41Z
dc.date.available2017-05-30T07:16:41Z
dc.date.issued2015
dc.description.abstract-translatedArtificial neural networks have become the state-of-the-art in the task of language modelling whereas Long-Short Term Memory (LSTM) networks seem to be an efficient architecture. The continuous skip-gram and the continuous bag of words (CBOW) are algorithms for learning quality distributed vector representations that are able to capture a large number of syntactic and semantic word relationships. In this paper, we carried out experiments with a combination of these powerful models: the continuous representations of words trained with skip-gram/CBOW/GloVe method, word cache expressed as a vector using latent Dirichlet allocation (LDA). These all are used on the input of LSTM network instead of 1-of-N coding traditionally used in language models. The proposed models are tested on Penn Treebank and MALACH corpus.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationSOUTNER, Daniel; MÜLLER, Luděk. On continuous space word representations as input of LSTM language model. In: Statistical Language and Speech Processing. Berlin: Springer, 2015, p. 267-274. (Lectures notes in computer science; 9449). ISBN 978-3-319-25788-4.en
dc.identifier.doi10.1007/978-3-319-25789-1_25
dc.identifier.isbn978-3-319-25788-4
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11025/26011
dc.language.isoenen
dc.publisherSpringercs
dc.relation.ispartofseriesLectures notes in computer science; 9449en
dc.rights© Springeren
dc.rights.accessopenAccessen
dc.subjectumělé neuronové sítěcs
dc.subjectmodelovánícs
dc.subjectkontinuální reprezentace slovcs
dc.subject.translatedartificial neural networksen
dc.subject.translatedmodelingen
dc.subject.translatedcontinuous representations of wordsen
dc.titleOn continuous space word representations as input of LSTM language modelen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Soutner.pdf
Size:
299.81 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections