Evaluation of Forces in Dynamically Loaded Journal Bearings Using Feedforward Neural Networks
| dc.contributor.author | Smolík, Luboš | |
| dc.contributor.author | Rendl, Jan | |
| dc.contributor.author | Bulín, Radek | |
| dc.date.accessioned | 2025-02-24T13:51:33Z | |
| dc.date.available | 2025-02-24T13:51:33Z | |
| dc.date.issued | 2024 | |
| dc.date.updated | 2025-02-24T13:51:33Z | |
| dc.description.abstract | This paper explores the usage of artificial neural networks to evaluate forces acting in dynamically loaded finite-length journal bearings. Unlike standard numerical approaches, which require solving a hydrodynamic pressure field, the network predicts the forces directly from relative displacements and velocities of a rotating journal to a stationary bearing shell. This practice can significantly accelerate transient simulations of systems supported on such bearings without compromising their nonlinear properties. The proposed method utilises feedforward neural networks, which use a precomputed database of nondimensional forces for training. This database is generated using a finite difference method and supplemented with the corresponding relative displacements and velocities. The performance of the trained networks is also analysed. | en |
| dc.format | 16 | |
| dc.identifier.document-number | 001289530700040 | |
| dc.identifier.doi | 10.1007/978-3-031-56496-3_40 | |
| dc.identifier.isbn | 978-3-031-56495-6 | |
| dc.identifier.issn | 2194-1009 | |
| dc.identifier.obd | 43934799 | |
| dc.identifier.uri | 2-s2.0-85199509625 | |
| dc.identifier.uri | http://hdl.handle.net/11025/58333 | |
| dc.language.iso | en | |
| dc.project.ID | EF17_048/0007267 | |
| dc.project.ID | SGS-2019-009 | |
| dc.publisher | Springer | |
| dc.relation.ispartofseries | 16th International Conference on Dynamical Systems Theory and Applications, DSTA 2021 | |
| dc.subject | turbochargers | en |
| dc.subject | rotordynamics | en |
| dc.subject | multi-body dynamics | en |
| dc.subject | floating ring bearings | en |
| dc.subject | rotating unbalance | en |
| dc.subject | dynamic unbalance | en |
| dc.title | Evaluation of Forces in Dynamically Loaded Journal Bearings Using Feedforward Neural Networks | en |
| dc.type | Stať ve sborníku (D) | |
| dc.type | STAŤ VE SBORNÍKU | |
| dc.type.status | Pre-print | |
| local.files.count | 1 | * |
| local.files.size | 1135473 | * |
| local.has.files | yes | * |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- dsta2021_smolik_proof.pdf
- Size:
- 1.08 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: