Evaluation of Forces in Dynamically Loaded Journal Bearings Using Feedforward Neural Networks

dc.contributor.authorSmolík, Luboš
dc.contributor.authorRendl, Jan
dc.contributor.authorBulín, Radek
dc.date.accessioned2025-02-24T13:51:33Z
dc.date.available2025-02-24T13:51:33Z
dc.date.issued2024
dc.date.updated2025-02-24T13:51:33Z
dc.description.abstractThis paper explores the usage of artificial neural networks to evaluate forces acting in dynamically loaded finite-length journal bearings. Unlike standard numerical approaches, which require solving a hydrodynamic pressure field, the network predicts the forces directly from relative displacements and velocities of a rotating journal to a stationary bearing shell. This practice can significantly accelerate transient simulations of systems supported on such bearings without compromising their nonlinear properties. The proposed method utilises feedforward neural networks, which use a precomputed database of nondimensional forces for training. This database is generated using a finite difference method and supplemented with the corresponding relative displacements and velocities. The performance of the trained networks is also analysed.en
dc.format16
dc.identifier.document-number001289530700040
dc.identifier.doi10.1007/978-3-031-56496-3_40
dc.identifier.isbn978-3-031-56495-6
dc.identifier.issn2194-1009
dc.identifier.obd43934799
dc.identifier.uri2-s2.0-85199509625
dc.identifier.urihttp://hdl.handle.net/11025/58333
dc.language.isoen
dc.project.IDEF17_048/0007267
dc.project.IDSGS-2019-009
dc.publisherSpringer
dc.relation.ispartofseries16th International Conference on Dynamical Systems Theory and Applications, DSTA 2021
dc.subjectturbochargersen
dc.subjectrotordynamicsen
dc.subjectmulti-body dynamicsen
dc.subjectfloating ring bearingsen
dc.subjectrotating unbalanceen
dc.subjectdynamic unbalanceen
dc.titleEvaluation of Forces in Dynamically Loaded Journal Bearings Using Feedforward Neural Networksen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPre-print
local.files.count1*
local.files.size1135473*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
dsta2021_smolik_proof.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: