Distributed Point-Mass Filter with Reduced Data Transfer Using Copula Theory

dc.contributor.authorMatoušek, Jakub
dc.contributor.authorDuník, Jindřich
dc.contributor.authorForsling, Robin
dc.date.accessioned2025-06-20T08:55:54Z
dc.date.available2025-06-20T08:55:54Z
dc.date.issued2023
dc.date.updated2025-06-20T08:55:54Z
dc.description.abstractThis paper deals with distributed Bayesian state estimation of generally nonlinear stochastic dynamic systems. In particular, distributed point-mass filter algorithm is developed. It is comprised of a basic part that is accurate but data intense and optional step employing advanced copula theory. The optional step significantly reduces data transfer for the price of a small accuracy decrease. In the end, the developed algorithm is numerically compared to the usually employed distributed extended Kalman filter.en
dc.format6
dc.identifier.document-number001027160301078
dc.identifier.doi10.23919/ACC55779.2023.10155942
dc.identifier.isbn979-8-3503-2806-6
dc.identifier.issn0743-1619
dc.identifier.obd43940674
dc.identifier.orcidMatoušek, Jakub 0000-0001-5014-1088
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.urihttp://hdl.handle.net/11025/61612
dc.language.isoen
dc.project.IDIDEG-IND-2021-002
dc.project.IDSGS-2022-022
dc.project.IDEF19_073/0016931
dc.publisherIEEE
dc.relation.ispartofseries2023 American Control Conference, ACC 2023
dc.subjectDistributed estimationen
dc.subjectpoint-mass filteren
dc.subjectcovariance intersectionen
dc.subjectdata reductionen
dc.titleDistributed Point-Mass Filter with Reduced Data Transfer Using Copula Theoryen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size518887*
local.has.filesyes*
local.identifier.eid2-s2.0-85167782855

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_ACC23_MaDuFo.pdf
Size:
506.73 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: