Deep Rendering Graphics Pipeline
| dc.contributor.author | Harris, Mark Wesley | |
| dc.contributor.author | Semwal, Sudhanshu | |
| dc.contributor.editor | Skala, Václav | |
| dc.date.accessioned | 2021-08-31T07:09:19Z | |
| dc.date.available | 2021-08-31T07:09:19Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract-translated | The graphics rendering pipeline is key to generating realistic images, and is a vital process of computational design,modeling, games, and animation. Perhaps the largest limiting factor of rendering is time; the processing requiredfor each pixel inevitably slows down rendering and produces a bottleneck which limits the speed and potential ofthe rendering pipeline. We applied deep generative networks to the complex problem of rendering an animated 3Dscene. Novel datasets of annotated image blocks were used to train an existing attentional generative adversarialnetwork to output renders of a 3D environment. The annotated Caltech-UCSD Birds-200-2011 dataset served asa baseline for comparison of loss and image quality. While our work does not yet generate production qualityrenders, we show how our method of using existing machine learning architectures and novel text and imageprocessing has the potential to produce a functioning deep rendering framework. | en |
| dc.format | 8 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | WSCG 2021: full papers proceedings: 29. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 101-108. | en |
| dc.identifier.doi | https://doi.org/10.24132/CSRN.2021.3101.11 | |
| dc.identifier.isbn | 978-80-86943-34-3 | |
| dc.identifier.issn | 2464-4617 | |
| dc.identifier.issn | 2464–4625(CD/DVD) | |
| dc.identifier.uri | http://hdl.handle.net/11025/45014 | |
| dc.language.iso | en | en |
| dc.publisher | Václav Skala - UNION Agency | cs |
| dc.rights | © Václav Skala - UNION Agency | cs |
| dc.rights.access | openAccess | en |
| dc.subject | grafický kanál | cs |
| dc.subject | vykreslovací technologie | cs |
| dc.subject | strojové učení | cs |
| dc.subject | zpracování obrazu | cs |
| dc.subject | generativní kontradiktorní sítě | cs |
| dc.subject | text na obrázek | cs |
| dc.subject | sémantické zpracování dat | cs |
| dc.subject.translated | graphics pipeline | en |
| dc.subject.translated | rendering technologies | en |
| dc.subject.translated | machine learning | en |
| dc.subject.translated | image processing | en |
| dc.subject.translated | generative adversarial networks | en |
| dc.subject.translated | text-to-image | en |
| dc.subject.translated | semantic data processing | en |
| dc.title | Deep Rendering Graphics Pipeline | en |
| dc.type | conferenceObject | en |
| dc.type | konferenční příspěvek | cs |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- I11.pdf
- Size:
- 7.35 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: