Automatická detekce spánkových vřetének

Abstract

Spánek je nedílnou součástí lidského života a průměrný člověk prospí asi jeho jednu třetinu. Proto je důležité spánku rozumět a správně ho analyzovat. Cílem diplomové práce je navrhnout, implementovat a otestovat různé typy metod strojového učení vhodné pro zpracování EEG signálu a identifikaci spánkových vřetének. Učící se algoritmy byly natrénovány na anotovaných datech, poskytnutých datovým centrem Montreal Archive of Sleep Studies (MASS). Nejlepšího výsledku klasifikace dosáhla konvoluční neuronová síť s přesností přes 67%.

Description

Subject(s)

eeg data, eeg signál, neuronové sítě, lstm, cnn, dense, spánková data, spánková vřetena

Citation

Collections