A convolutional neural network approach for steel surface defect detection in nuclear facilities

dc.contributor.authorSinha, Kristy Gourab
dc.contributor.authorNoor, Fayaz
dc.date.accessioned2024-09-15T19:00:53Z
dc.date.available2024-09-15T19:00:53Z
dc.date.issued2024
dc.description.abstract-translatedThis research highlights the effectiveness of sophisticated preprocessing techniques and deep learning architectures in the detection of metal surface defects. The detection of surface defects is paramount in both the steel manufacturing and nuclear industries, as it directly affects product quality, production efficiency, and operational safety. The study underscores the importance of model architecture and preprocessing methods in achieving high classification accuracyen
dc.format2 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.isbn978-80-261-1243-3
dc.identifier.urihttp://hdl.handle.net/11025/57457
dc.language.isoen
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.rights© University of West Bohemiaen
dc.rights.accessopenAccessen
dc.subjectpostercs
dc.subject.translatedposteren
dc.titleA convolutional neural network approach for steel surface defect detection in nuclear facilitiesen
dc.typekonferenční příspěvekcs
dc.type.statusPeer revieweden
dc.type.versionpublishedVersionen
local.files.count2*
local.files.size1404384*
local.has.filesyes*

Files

Original bundle
Showing 1 - 2 out of 2 results
No Thumbnail Available
Name:
978-80-261-1243-3 (FINAL)-14-15.pdf
Size:
854.11 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
uvod+tiraz.pdf
Size:
517.36 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: