A convolutional neural network approach for steel surface defect detection in nuclear facilities
| dc.contributor.author | Sinha, Kristy Gourab | |
| dc.contributor.author | Noor, Fayaz | |
| dc.date.accessioned | 2024-09-15T19:00:53Z | |
| dc.date.available | 2024-09-15T19:00:53Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract-translated | This research highlights the effectiveness of sophisticated preprocessing techniques and deep learning architectures in the detection of metal surface defects. The detection of surface defects is paramount in both the steel manufacturing and nuclear industries, as it directly affects product quality, production efficiency, and operational safety. The study underscores the importance of model architecture and preprocessing methods in achieving high classification accuracy | en |
| dc.format | 2 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.isbn | 978-80-261-1243-3 | |
| dc.identifier.uri | http://hdl.handle.net/11025/57457 | |
| dc.language.iso | en | |
| dc.language.iso | en | en |
| dc.publisher | University of West Bohemia | en |
| dc.rights | © University of West Bohemia | en |
| dc.rights.access | openAccess | en |
| dc.subject | poster | cs |
| dc.subject.translated | poster | en |
| dc.title | A convolutional neural network approach for steel surface defect detection in nuclear facilities | en |
| dc.type | konferenční příspěvek | cs |
| dc.type.status | Peer reviewed | en |
| dc.type.version | publishedVersion | en |
| local.files.count | 2 | * |
| local.files.size | 1404384 | * |
| local.has.files | yes | * |
Files
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: