Deep Light Direction Reconstruction from single RGB images

dc.contributor.authorMiller, Markus
dc.contributor.authorNischwitz, Alfred
dc.contributor.authorWestermann, Rüdiger
dc.contributor.editorSkala, Václav
dc.date.accessioned2021-08-31T05:45:53Z
dc.date.available2021-08-31T05:45:53Z
dc.date.issued2021
dc.description.abstract-translatedIn augmented reality applications, consistent illumination between virtual and real objects is important for creatingan immersive user experience. Consistent illumination can be achieved by appropriate parameterisation of thevirtual illumination model, that is consistent with real-world lighting conditions. In this study, we developed amethod to reconstruct the general light direction from red-green-blue (RGB) images of real-world scenes using amodified VGG-16 neural network. We reconstructed the general light direction as azimuth and elevation angles. Toavoid inaccurate results caused by coordinate uncertainty occurring at steep elevation angles, we further introducedstereographically projected coordinates. Unlike recent deep-learning-based approaches for reconstructing the lightsource direction, our approach does not require depth information and thus does not rely on special red-green-blue-depth (RGB-D) images as input.en
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG 2021: full papers proceedings: 29. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 31-40.en
dc.identifier.doihttps://doi.org/10.24132/CSRN.2021.3101.4
dc.identifier.isbn978-80-86943-34-3
dc.identifier.issn2464-4617
dc.identifier.issn2464–4625(CD/DVD)
dc.identifier.urihttp://hdl.handle.net/11025/45007
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectsvětlocs
dc.subjectzdrojcs
dc.subjectsměrcs
dc.subjectodhadcs
dc.subjectrekonstrukcecs
dc.subjectRGBcs
dc.subjecthluboké učenícs
dc.subject.translatedlighten
dc.subject.translatedsourceen
dc.subject.translateddirectionen
dc.subject.translatedestimationen
dc.subject.translatedreconstructionen
dc.subject.translatedRGBen
dc.subject.translateddeep learningen
dc.titleDeep Light Direction Reconstruction from single RGB imagesen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
H59.pdf
Size:
7.32 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: