Deep Light Direction Reconstruction from single RGB images
| dc.contributor.author | Miller, Markus | |
| dc.contributor.author | Nischwitz, Alfred | |
| dc.contributor.author | Westermann, Rüdiger | |
| dc.contributor.editor | Skala, Václav | |
| dc.date.accessioned | 2021-08-31T05:45:53Z | |
| dc.date.available | 2021-08-31T05:45:53Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract-translated | In augmented reality applications, consistent illumination between virtual and real objects is important for creatingan immersive user experience. Consistent illumination can be achieved by appropriate parameterisation of thevirtual illumination model, that is consistent with real-world lighting conditions. In this study, we developed amethod to reconstruct the general light direction from red-green-blue (RGB) images of real-world scenes using amodified VGG-16 neural network. We reconstructed the general light direction as azimuth and elevation angles. Toavoid inaccurate results caused by coordinate uncertainty occurring at steep elevation angles, we further introducedstereographically projected coordinates. Unlike recent deep-learning-based approaches for reconstructing the lightsource direction, our approach does not require depth information and thus does not rely on special red-green-blue-depth (RGB-D) images as input. | en |
| dc.format | 10 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | WSCG 2021: full papers proceedings: 29. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 31-40. | en |
| dc.identifier.doi | https://doi.org/10.24132/CSRN.2021.3101.4 | |
| dc.identifier.isbn | 978-80-86943-34-3 | |
| dc.identifier.issn | 2464-4617 | |
| dc.identifier.issn | 2464–4625(CD/DVD) | |
| dc.identifier.uri | http://hdl.handle.net/11025/45007 | |
| dc.language.iso | en | en |
| dc.publisher | Václav Skala - UNION Agency | cs |
| dc.rights | © Václav Skala - UNION Agency | cs |
| dc.rights.access | openAccess | en |
| dc.subject | světlo | cs |
| dc.subject | zdroj | cs |
| dc.subject | směr | cs |
| dc.subject | odhad | cs |
| dc.subject | rekonstrukce | cs |
| dc.subject | RGB | cs |
| dc.subject | hluboké učení | cs |
| dc.subject.translated | light | en |
| dc.subject.translated | source | en |
| dc.subject.translated | direction | en |
| dc.subject.translated | estimation | en |
| dc.subject.translated | reconstruction | en |
| dc.subject.translated | RGB | en |
| dc.subject.translated | deep learning | en |
| dc.title | Deep Light Direction Reconstruction from single RGB images | en |
| dc.type | konferenční příspěvek | cs |
| dc.type | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- H59.pdf
- Size:
- 7.32 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: