Efficient Regularization-based Normalization for Interactive Multidimensional Data Analysis Without Scaling Artifacts

dc.contributor.authorMolchanov, Vladimir
dc.contributor.authorRave, Hennes
dc.contributor.authorLinsen, Lars
dc.date.accessioned2025-07-30T07:28:08Z
dc.date.available2025-07-30T07:28:08Z
dc.date.issued2025
dc.description.abstract-translatedAttribute values in multidimensional datasets often have different measurement units, making data normalization an essential preprocessing step for visualization algorithms such as multidimensional data projections. However, existing normalization techniques are often sensitive to noise, rely on specific data models, are computationally expensive, or have other limitations. The state-of-the-art method for computing optimal scalings of multidimensional data attributes is based on Lloyd relaxation in a linearly projected space. However, its high computational complexity hinders its applicability to datasets of moderate or large sizes. We overcome this limitation by efficiently regularizing the distribution of projected samples using integral images. Our method reduces scaling-induced artifacts, leading to more reliable multidimensional data analysis. In numerical experiments, we demonstrate that our approach, generally, outperforms state-of-the-art methods in computation time, scalability, accuracy, and stability.en
dc.description.sponsorshipThis work was funded by the Deutsche Forschungsgemeinschaft (DFG) grants MO 3050/2-3 – 360330772 and CRC 1450 – 431460824.
dc.description.sponsorshipThis work was funded by the Deutsche Forschungsgemeinschaft (DFG) grants MO 3050/2-3 – 360330772 and CRC 1450 – 431460824.en
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.doihttp://www.doi.org/10.24132/JWSCG.2025-5
dc.identifier.issn1213-6972 (print)
dc.identifier.issn1213-6964 (online)
dc.identifier.urihttp://hdl.handle.net/11025/62199
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.rights© Václav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectvícerozměrná vizualizace datcs
dc.subjectlineární projekcecs
dc.subjectnormalizace datcs
dc.subjectškálování atributůcs
dc.subject.translatedmultidimensional data visualizationen
dc.subject.translatedlinear projectionen
dc.subject.translateddata normalizationen
dc.subject.translatedattribute scalingen
dc.titleEfficient Regularization-based Normalization for Interactive Multidimensional Data Analysis Without Scaling Artifactsen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
local.files.count1*
local.files.size3097001*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
B41.pdf
Size:
2.95 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: