State-Dependent Neural Flux Linkage Models of Synchronous Machines

dc.contributor.authorŠevčík, Jakub
dc.contributor.authorŠmídl, Václav
dc.contributor.authorGlac, Antonín
dc.date.accessioned2025-08-29T06:06:22Z
dc.date.available2025-08-29T06:06:22Z
dc.date.issued2025
dc.date.updated2025-08-29T06:06:22Z
dc.description.abstractFlux linkage maps (FLMs) are routinely used in high-precision control and modeling of synchronous machines. Common methods often consider only the dependence of the FLM on the stator currents, allowing for convenient representation in lookup tables or neural networks. However, the flux linkage also depends on speed, position, and other state variables. Although this is formally simple to add as an additional input to neural models of FLM, the estimation with additional inputs becomes more demanding. We demonstrate that the conventional approach of FLM training using the assumption of a steady-state regime is insufficient to learn the dependency on the rotor position. It is necessary to use the complete ordinary differential equation of the current to learn the FLM model. Even for a shallow neural model of the FLM, the estimation procedure yields a deep learning task known as neural ODE. This procedure essentially generates multistep ahead prediction of differential equations and minimizes the mismatch between the mathematical model and data. The efficiency of this approach is demonstrated on the FLM of a synchronous machine considering flux saturation, speed dependence, and slot harmonics. The proposed approach significantly improves current prediction, yielding improved deadbeat current control. The results are experimentally verified on a 4.5 kW laboratory prototype.en
dc.format9
dc.identifier.document-number001480212300001
dc.identifier.doi10.1109/TII.2025.3552719
dc.identifier.issn1551-3203
dc.identifier.obd43946554
dc.identifier.orcidŠevčík, Jakub 0000-0001-8816-7961
dc.identifier.orcidŠmídl, Václav 0000-0003-3027-6174
dc.identifier.orcidGlac, Antonín 0000-0001-9517-5433
dc.identifier.urihttp://hdl.handle.net/11025/62757
dc.language.isoen
dc.project.IDEH23_021/0008999
dc.relation.ispartofseriesIEEE Transactions on Industrial Informatics
dc.rights.accessC
dc.subjectdeadbeat (DB) controlen
dc.subjectflux linkageen
dc.subjectinterior permanent magnet synchronous machine (IPMSM)en
dc.subjectmodel identificationen
dc.subjectneural ordinary differential equation (ODE)en
dc.subjectneural network (NN)en
dc.subjectPMSMen
dc.subjectparameter stimationen
dc.subjectsynchronous machineen
dc.titleState-Dependent Neural Flux Linkage Models of Synchronous Machinesen
dc.typeČlánek v databázi WoS (Jimp)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size2105945*
local.has.filesyes*
local.identifier.eid2-s2.0-105003037062

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
State-Dependent_Neural_Flux_Linkage_Models_of_Synchronous_Machines.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections